在直角三角形ABC中,角ABC等于90度,AC等于BC,D为BC中点,CE垂直于AD,BF平行于AC交CE于F,DF交AB于G,求证AB垂直平分DF(画图分析)
证明:连接DF,∵∠BCE ∠ACE=90°,∠ACE ∠CAE=90°,∴∠BCE=∠CAE.∵AC⊥BC,BF∥AC.∴BF⊥BC.∴∠ACD=∠CBF=90°,∵AC=CB,∴△ACD≌△CBF.∴CD=BF.∵CD=BD= 1/2BC,∴BF=BD.∴△BFD为等腰直角三角形.∵∠ACB=90°,CA=CB,∴∠ABC=45°.∵∠FBD=90°,∴∠ABF=45°.∴∠ABC=∠ABF,即BA是∠FBD的平分线.∴BA是FD边上的高线,BA又是边FD的中线,即AB垂直平分DF.。
证明:连接DF,∵∠BCE ∠ACE=90°,∠ACE ∠CAE=90°,∴∠BCE=∠CAE.∵AC⊥BC,BF∥AC.∴BF⊥BC.∴∠ACD=∠CBF=90°,∵AC=CB,∴△ACD≌△CBF.∴CD=BF.∵CD=BD= 1/2BC,∴BF=BD.∴△BFD为等腰直角三角形.∵∠ACB=90°,CA=CB,∴∠ABC=45°.∵∠FBD=90°,∴∠ABF=45°.∴∠ABC=∠ABF,即BA是∠FBD的平分线.∴BA是FD边上的高线,BA又是边FD的中线,即AB垂直平分DF.。
收起