关于数学向量题...(高一)已知
楼上解法正确,过程有点错误:
已知向量a=(cos3/2x,sin3/2x),b=(cos1/2x,-sin1/2x),且x∈[0,派/2],若f(x)=ab-2K|a+b|的最小值是-3/2,求K的值。
a·b =[cos(3/2)x·cos(1/2)x + sin(3/2)x·(-sin1/2x)
=[cos(3/2)x·cos(1/2)x - sin(3/2)x·sin(1/2)x
=cos[(3/2)x+(1/2)x] = cos(2x)
|a+b|^=[cos(3/2)x+cos(1/2)x]^+[sin(3/2)x-sin(1/2)x]^
=2 + 2co...全部
楼上解法正确,过程有点错误:
已知向量a=(cos3/2x,sin3/2x),b=(cos1/2x,-sin1/2x),且x∈[0,派/2],若f(x)=ab-2K|a+b|的最小值是-3/2,求K的值。
a·b =[cos(3/2)x·cos(1/2)x + sin(3/2)x·(-sin1/2x)
=[cos(3/2)x·cos(1/2)x - sin(3/2)x·sin(1/2)x
=cos[(3/2)x+(1/2)x] = cos(2x)
|a+b|^=[cos(3/2)x+cos(1/2)x]^+[sin(3/2)x-sin(1/2)x]^
=2 + 2cos(3/2)xcos(1/2)x - 2sin(3/2)x·sin1/2x)
=2+2cos(2x)=4cos^x
f(x) =cos(2x)-2K·|2cosx|
=2|cosx|^-4K|cosx|-1
=2[|cosx|-K]^-(2K^+1)
如果K≥1,则|cosx|=1时,f(x)有最小值=1-4K=-3/2--->K=5/8,矛盾;
如果K≤0,则|cosx|=0时,f(x)有最小值=-1≠-3/2--->矛盾;
如果0K^=1/4--->K=±1/2
综上,K=±1/2。
收起