影响稀土萃取的主要因素有哪些
稀土就是化学元素周期表中镧系元素―镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素―钪(Sc)和钇(Y)共17种元素,称为稀土元素(RareEarth)。 简称稀土(RE或R)。
稀土元素最初是从瑞典产的比较稀少的矿物中发现的,“土”是按当时的习惯,称不溶于水的物质,故称稀土。
根据稀土元素原子电子层结构和物理化学性质,以及它们在矿物中共生情况和不同的离子半径可产生不同性质的特征,十七种稀土元素通常分为二组。
轻稀...全部
稀土就是化学元素周期表中镧系元素―镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素―钪(Sc)和钇(Y)共17种元素,称为稀土元素(RareEarth)。
简称稀土(RE或R)。
稀土元素最初是从瑞典产的比较稀少的矿物中发现的,“土”是按当时的习惯,称不溶于水的物质,故称稀土。
根据稀土元素原子电子层结构和物理化学性质,以及它们在矿物中共生情况和不同的离子半径可产生不同性质的特征,十七种稀土元素通常分为二组。
轻稀土(又称铈组)包括:镧、铈、镨、钕、钷、钐、铕、钆。
重稀土(又称钇组)包括:铽、镝、钬、铒、铥、镱、镥、钪、钇。
称铈组或钇组,是因为矿物经分离得到的稀土混合物中,常以铈或钇占优势而得名。
稀土元素的主要物理化学性质
稀土元素是典型的金属元素。它们的金属活泼性仅次于碱金属和碱土金属元素,而比其他金属元素活泼。在17个稀土元素当中,按金属的活泼次序排列,由钪,钇、镧递增,由镧到镥递减,即镧元素最活泼。
稀土元素能形成化学稳定的氧化物、卤化物、硫化物。稀土元素可以和氮、氢、碳、磷发生反应,易溶于盐酸、硫酸和硝酸中。
稀土易和氧、硫、铅等元素化合生成熔点高的化合物,因此在钢水中加入稀土,可以起到净化钢的效果。
由于稀土元素的金属原子半径比铁的原子半径大,很容易填补在其晶粒及缺陷中,并生成能阻碍晶粒继续生长的膜,从而使晶粒细化而提高钢的性能。
稀土元素具有未充满的4f电子层结构,并由此而产生多种多样的电子能级。
因此,稀土可以作为优良的荧光,激光和电光源材料以及彩色玻璃、陶瓷的釉料。
稀土离子与羟基、偶氮基或磺酸基等形成结合物,使稀土广泛用于印染行业。而某些稀土元素具有中子俘获截面积大的特性,如钐、铕、钆、镝和铒,可用作原子能反应堆的控制材料和减速剂。
而铈、钇的中子俘获截面积小,则可作为反应堆燃料的稀释剂。
稀土具有类似微量元素的性质,可以促进农作物的种子萌发,促进根系生长,促进植物的光合作用。
2 什么是萃取
萃取又称溶剂萃取或液液萃取(以区别于固液萃取,即浸取),亦称抽提(通用于石油炼制工业),是一种用液态的萃取剂处理与之不互溶的双组分或多组分溶液,实现组分分离的传质分离过程,是一种广泛应用的单元操作。
利用相似相溶原理,萃取有两种方式:
液-液萃取,用选定的溶剂分离液体混合物中某种组分,溶剂必须与被萃取的混合物液体不相溶,具有选择性的溶解能力,而且必须有好的热稳定性和化学稳定性,并有小的毒性和腐蚀性。
如用苯分离煤焦油中的酚;用有机溶剂分离石油馏分中的烯烃; 用CCl4萃取水中的Br2。
固-液萃取,也叫浸取,用溶剂分离固体混合物中的组分,如用水浸取甜菜中的糖类;用酒精浸取黄豆中的豆油以提高油产量;用水从中药中浸取有效成分以制取流浸膏叫“渗沥”或“浸沥”。
虽然萃取经常被用在化学试验中,但它的操作过程并不造成被萃取物质化学成分的改变(或说化学反应),所以萃取操作是一个物理过程。
萃取是有机化学实验室中用来提纯和纯化化合物的手段之一。
通过萃取,能从固体或液体混合物中提取出所需要的化合物
3 关于稀土萃取
我国稀土储量居世界首位,且轻、中、重稀土品种齐全。尽管我国稀土萃取分离技术达到世界先进水平,但稀土分离生产过程控制还停留在离线分析、经验调整、手动控制的水平,导致稀土分离企业生产效率低、资源消耗大、产品质量不稳定,已成为制约我国稀土工业发展的瓶颈。
研究与开发出适合我国稀土萃取分离生产过程的自动化技术及系统已成为发展我国稀土工业的重大科技关键问题。本文以国家“十五”科技攻关项目“稀土萃取过程在线分析与闭环控制产业化技术(2002BA315A-4)”研究图片分析仪为背景,针对稀土萃取分离生产过程中元素组分含量在线检测的难题,在深入研究分析稀土萃取分离生产过程特点的基础上,将机理建模与智能建模方法相结合全面系统地开展了稀土萃取分离过程组分含量软测量方法及其应用研究。
主要研究工作归纳如下: 1。综述了稀土萃取分离生产过程元素成分在线检测方法及其应用现状;稀土萃取分离过程控制技术研究及其应用现状;软测量技术及其应用研究现状。阐述了稀土萃取分离生产过程元素组分含量在线检测和自动控制的难点,指出稀土萃取分离过程组分含量软测量方法、以综合生产指标为目标的稀土萃取分离生产过程优化控制方法以及由生产管理系统和过程控制系统两层结构组成的稀土分离生产过程综合自动化系统已成为稀土分离过程自动化的发展方向。
2。从萃取分离过程的化学平衡入手,分析影响稀土萃取平衡的主要因素以及稀土萃取平衡分配模型的建模方法。以多组分稀土串级萃取分离过程为对象,应用萃取平衡分配模型和串级萃取物料平衡原理建立了稀土串级萃取图片离子交换设备平衡计算模型,提出了应用该平衡计算模型实现萃取分离过程组分含量估计的方法及难点。
3。针对稀土串级萃取平衡计算模型存在的问题,提出了基于RBF神经网络的稀土萃取分离过程组分含量软测量方法。应用该方法对实际萃取分离生产过程进行了组分含量软测量实验研究,得到泛化均方根误差RMSE=3。
579和最大泛化误差MAXE=9。527,表明该方法可用于对稀土萃取分离过程组分含量进行在线估计和趋势预测,但RBF神经网络组分含量软测量模型结构和参数变化对组分含量软测量结果影响较大。 4。
针对上述软测量方法的不足,将基于机理的串级萃取平衡计算模型和基于ANFIS的建模误差补偿模型相结合提出了基于混合模型的组分含量软测量方法。该方法可通过串级萃取平衡计算模型来保证组分含量软测量模型的可靠性和泛化能力,同时利用建模误差补偿模型来提高软测量精度。
采用该方法和RBF神经网络软测量方法对实际萃取分离生产过程进行了比较实验研究,得到该方法的泛化均方根误差RMSE=2。315和最大泛化误差MAXE=4。509,表明该方法具有较高泛化能力和估计精度,满足稀土萃取分离过程控制要求。
5。开展基于混合模型的组分含量软测量方法在HAB萃取提钇生产过程中的应用研究。首先提出了实现稀土产品纯度、金属回收率等综合生产指标优化的稀土萃取分离过程综合自动化系统;讨论了由生产管理系统和过程控制系统两层结构组成的综合自动化系统的体系结构、功能和以萃取分离过程两端出口产品纯度为目标的优化控制策略。
将组分含量混合软测量模型作为优化控制系统中监测点组分含量预报模型,通过基于案例推理技术实现稀土萃取分离过程中料液、萃取剂、洗涤液流量的优化设定控制。该综合自动化系统应用于某公司HAB萃取提钇生产过程,保证了第一段钇产品纯度≥99。
5%,非钇中钇含量≤0。5%;钇金属回收率提高了2。07%。实现了生产过程的优化控制、优化运行和优化管理,取得了显著的应用成效。
。收起