两角和与差的正弦、余弦、正切CO
一元函数f(x)=y 函数两组元素一一对应的规则,第一组中的每个元素在第二组中只有唯一的对应量。
数学中的一种对应关系,是从某集合A到实数集B的对应。简单地说,甲随着乙变,甲就是乙的函数 。 精确地说,设X是一个不空集合,Y是某个实数集合 ,f是个规则 , 若对X中的每个x,按规则f,有Y中的一个y与之对应 , 就称f是X上的一个函数,记作y=f(x),称X为函数f(x)的定义域,Y为其值域,x叫做自变量,y为因变量。
例1:y=sinx X=〔0,2π〕,Y=〔-1,1〕 ,它给出了一个函数关系。当然 ,把Y改为Y1=(a,b) ,a<b为任意实数,仍然是一个函数关系。
其深度y与...全部
一元函数f(x)=y 函数两组元素一一对应的规则,第一组中的每个元素在第二组中只有唯一的对应量。
数学中的一种对应关系,是从某集合A到实数集B的对应。简单地说,甲随着乙变,甲就是乙的函数 。
精确地说,设X是一个不空集合,Y是某个实数集合 ,f是个规则 , 若对X中的每个x,按规则f,有Y中的一个y与之对应 , 就称f是X上的一个函数,记作y=f(x),称X为函数f(x)的定义域,Y为其值域,x叫做自变量,y为因变量。
例1:y=sinx X=〔0,2π〕,Y=〔-1,1〕 ,它给出了一个函数关系。当然 ,把Y改为Y1=(a,b) ,a<b为任意实数,仍然是一个函数关系。
其深度y与一岸边点 O到测量点的距离 x 之间的对应关系呈曲线,这代表一个函数,定义域为〔0,b〕。
以上3例展示了函数的三种表示法:公式法 , 表格法和图像法。
复合函数
有3个变量,y是u的函数,y=ψ(u),u是x的函数,u=f(x),往往能形成链:y通过中间变量u构成了x的函数:
x→u→y,这要看定义域:设ψ的定义域为U 。
f的值域为U,当U*ÍU时,称f与ψ 构成一个复合函数 , 例如 y=lgsinx,x∈(0,π)。此时sinx>0 ,lgsinx有意义 。但如若规定x∈(-π,0),此时sinx<0 ,lgsinx无意义 ,就成不了复合函数。
反函数
就关系而言,一般是双向的 ,函数也如此 ,设y=f(x)为已知的函数,若对每个y∈Y,有唯一的x∈X,使f(x)=y,这是一个由y找x的过程 ,即x成了y的函数 ,记为x=f -1(y)。
称f -1为f的反函数。习惯上用x表示自变量 ,故这个函数仍记为y=f -1(x) ,例如 y=sinx与y=arcsinx 互为反函数。在同一坐标系中,y=f(x)与y=f -1(x)的图形关于直线y=x对称。
隐函数
若能由函数方程 F(x,y)=0 确定y为x的函数y=f(x),即F(x,f(x))≡0,就称y是x的隐函数。
多元函数
设点(x1,x2,…,xn) ∈GÍRn,UÍR1 ,若对每一点(x1,x2,…,xn)∈G,由某规则f有唯一的 u∈U与之对应:f:G→U,u=f(x1,x2,…,xn),则称f为一个n元函数,G为定义域,U为值域。
基本初等函数及其图像 幂函数、指数函数、对数函数、三角函数、反三角函数称为基本初等函数。
①幂函数:y=xμ(μ≠0,μ为任意实数)定义域:μ为正整数时为(-∞,+∞),μ为负整数时是(-∞,0)∪(0,+∞);μ=(α为整数),当α是奇数时为( -∞,+∞),当α是偶数时为(0,+∞);μ=p/q,p,q互素,作为的复合函数进行讨论。
略图如图2、图3。
②指数函数:y=ax(a>0 ,a≠1),定义成为( -∞,+∞),值域为(0 ,+∞),a>0 时是严格单调增加的函数( 即当x2>x1时,) ,0<a<1 时是严格单减函数。
对任何a,图像均过点(0,1),注意y=ax和y=()x的图形关于y轴对称。如图4。
③对数函数:y=logax(a>0), 称a为底 , 定义域为(0,+∞),值域为(-∞,+∞) 。
a>1 时是严格单调增加的,0<a<1时是严格单减的。不论a为何值,对数函数的图形均过点(1,0),对数函数与指数函数互为反函数 。如图5。
以10为底的对数称为常用对数 ,简记为lgx 。
在科学技术中普遍使用的是以e为底的对数,即自然对数,记作lnx。
④三角函数:
正弦函数、余弦函数
⑤反三角函数双曲正、余弦
⑥双曲函数:双曲正弦(ex-e-x),双曲余弦(ex+e-x),双曲正切(ex-e-x)/(ex+e-x) ,双曲余切( ex+e-x)/(ex-e-x)。
[编辑]补充
在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素(这只是一元函数f(x)=y的情况,请按英文原文把普遍定义给出,谢谢)。
函数的概念对于数学和数量学的每一个分支来说都是最基础的。
术语函数,映射,对应,变换通常都是同一个意思。
二次函数
I。定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax^2;+bx+c(a,b,c为常数,a≠0)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II。二次函数的三种表达式
一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2;+k [抛物线的顶点P(h,k)]
交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a
III。
二次函数的图象
在平面直角坐标系中作出二次函数y=x^2;的图象,
可以看出,二次函数的图象是一条抛物线。
IV。抛物线的性质
1。抛物线是轴对称图形。对称轴为直线 x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2。抛物线有一个顶点P,坐标为
P [ -b/2a ,(4ac-b^2;)/4a ]。
当-b/2a=0时,P在y轴上;当Δ= b^2;-4ac=0时,P在x轴上。
3。二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4。一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5。常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6。抛物线与x轴交点个数
Δ= b^2;-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2;-4ac=0时,抛物线与x轴有1个交点。
Δ= b^2;-4ac<0时,抛物线与x轴没有交点。
V。二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2;+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2;+bx+c=0
此时,函数图象与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
一次函数
I、定义与定义式:
自变量x和因变量y有如下关系: y=kx+b(k,b为常数,k≠0)
则称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
II、一次函数的性质:
y的变化值与对应的x的变化值成正比例,比值为k
即 △y/△x=k
III、一次函数的图象及性质:
1. 作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图象——一条直线。
因此,作一次函数的图象只需知道2点,并连成直线即可。
2. 性质:在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
3. k,b与函数图象所在象限。
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图象。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
IV、确定一次函数的表达式:
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:
y1=kx1+b① 和 y2=kx2+b②。
(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
V、一次函数在生活中的应用
1。
当时间t一定,距离s是速度v的一次函数。s=vt。
2。当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
反比例函数
形如 y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数的图像为双曲线。
三角函数
三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
由于三角函数的周期性,它并不具有单值函数意义上的反函数。
它有六种基本函数:
函数名 正弦 余弦 正切 余切 正割 余割
符号 sin cos tan cot sec csc
正弦函数 sin(A)=a/h
余弦函数 cos(A)=b/h
正切函数 tan(A)=a/b
余切函数 cot(A)=b/a
在某一变化过程中,两个变量x、y,对于某一范围内的x的每一个值,y都有确定的值和它对应,y就是x的函数。
这种关系一般用y=f(x)来表示。
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA)
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
sin2A=2sinA*cosA
三倍角公式
sin3a=3sina-4(sina)^3
cos3a=4(cosa)^3-3cosa
tan3a=tana*tan(π/3+a)*tan(π/3-a)
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)
和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B) )
2cosAcosB=cos(A+B)+cos(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
积化和差公式
sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]
诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(pi/2-a)=cos(a)
cos(pi/2-a)=sin(a)
sin(pi/2+a)=cos(a)
cos(pi/2+a)=-sin(a)
sin(pi-a)=sin(a)
cos(pi-a)=-cos(a)
sin(pi+a)=-sin(a)
cos(pi+a)=-cos(a)
tgA=tanA=sinA/cosA
万能公式
sin(a)= (2tan(a/2))/(1+tan^2(a/2))
cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))
tan(a)= (2tan(a/2))/(1-tan^2(a/2))
其它公式
a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]
a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]
1+sin(a)=(sin(a/2)+cos(a/2))^2
1-sin(a)=(sin(a/2)-cos(a/2))^2
其他非重点三角函数
csc(a)=1/sin(a)
sec(a)=1/cos(a)
双曲函数
sin(a)=(e^a-e^(-a))/2
cos(a)=(e^a+e^(-a))/2
tgh(a)=sinh(a)/cosh(a)
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1 sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα sin2α+cos2α=1
1+tan2α=sec2α
1+cot2α=csc2α
。收起