光照怎样控制开关
光电管 phototube
基于外光电效应的基本光电转换器件。电管可使光信号转换成电信号。分真空光电管和充气光电管两种。光电管的典型结构是将球形玻璃壳抽成真空,在内半球面上涂一层光电材料作为阴极,球心放置小球形或小环形金属作为阳极。 若球内充低压惰性气体就成为充气光电管。光电子在飞向阳极的过程中与气体分子碰撞而使气体电离,可增加光电管的灵敏度。用作光电阴极的金属有碱金属、汞、金、银等,可适合不同波段的需要。光电管灵敏度低、体积大、易破损,已被固体光电器件所代替。
光电倍增管是进一步提高光电管灵敏度的光电转换器件。管内除光电阴极和阳极外,两极间还放置多个瓦形倍增电极。使用时相...全部
光电管 phototube
基于外光电效应的基本光电转换器件。电管可使光信号转换成电信号。分真空光电管和充气光电管两种。光电管的典型结构是将球形玻璃壳抽成真空,在内半球面上涂一层光电材料作为阴极,球心放置小球形或小环形金属作为阳极。
若球内充低压惰性气体就成为充气光电管。光电子在飞向阳极的过程中与气体分子碰撞而使气体电离,可增加光电管的灵敏度。用作光电阴极的金属有碱金属、汞、金、银等,可适合不同波段的需要。光电管灵敏度低、体积大、易破损,已被固体光电器件所代替。
光电倍增管是进一步提高光电管灵敏度的光电转换器件。管内除光电阴极和阳极外,两极间还放置多个瓦形倍增电极。使用时相邻两倍增电极间均加有电压用来加速电子。光电阴极受光照后释放出光电子,在电场作用下射向第一倍增电极,引起电子的二次发射,激发出更多的电子,然后在电场作用下飞向下一个倍增电极,又激发出更多的电子。
如此电子数不断倍增 ,阳极最后收集到的电子可增加 104~108倍,这使光电倍增管的灵敏度比普通光电管要高得多,可用来检测微弱光信号。光电倍增管高灵敏度和低噪声的特点使它在光测量方面获得广泛应用。
真空光电管 真空光电管(又称电子光电管)由封装于真空管内的光电阴极和阳极构成。当入射光线穿过光窗照到光阴极上时,由于外光电效应(见光电式传感器),光电子就从极层内发射至真空。在电场的作用下,光电子在极间作加速运动,最后被高电位的阳极接收,在阳极电路内就可测出光电流,其大小取决于光照强度和光阴极的灵敏度等因素。
按照光阴极和阳极的形状和设置的不同,光电管一般可分为 5种类型。①中心阴极型:这种类型由于阴极面积很小,受照光通量不大,仅适用于低照度探测和光子初速度分布的测量。②中心阳极型:这种类型由于阴极面积大,对入射聚焦光斑的大小限制不大;又由于光电子从光阴极飞向阳极的路程相同,电子渡越时间的一致性好;其缺点是光电子接收特性差,需要较高的阳极电压(图a)。
③半圆柱面阴极型:这种结构有利于增加极间绝缘性能和减少漏电流(图b)。④平行平板极型:这种类型的特点是光电子从阴极飞向阳极基本上保持平行直线的轨迹,电极对于光线入射的一致性好。⑤带圆筒平板阴极型:它的特点是结构紧凑、体积小、工作稳定。
充气光电管 充气光电管(又称离子光电管)由封装于充气管内的光阴极和阳极构成。它不同于真空光电管的是,光电子在电场作用下向阳极运动时与管中气体原子碰撞而发生电离现象。由电离产生的电子和光电子一起都被阳极接收,正离子却反向运动被阴极接收。
因此在阳极电路内形成数倍于真空光电管的光电流。充气光电管的电极结构也不同于真空光电管。常用的电极结构有中心阴极型、半圆柱阴极型和平板阴极型。充气光电管最大缺点是在工作过程中灵敏度衰退很快,其原因是正离子轰击阴极而使发射层的结构破坏。
充气光电管按管内充气不同可分为单纯气体型和混合气体型。①单纯气体型:这种类型的光电管多数充氩气,优点是氩原子量小,电离电位低,管子的工作电压不高。有些管内充纯氦或纯氖,使工作电压提高。②混合气体型:这种类型的管子常选氩氖混合气体,其中氩占10%左右。
由于氩原子的存在使处于亚稳态的氖原子碰撞后即能恢复常态,因此减少惰性。收起