勾股定理与勾股定理的逆定理有什么特点
1、勾股定理是余弦定理的一个特例。这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”或者“百牛定理“。(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”),法国、比利时人又称这个定理为“驴桥定理”。 他们发现勾股定理的时间都比中国晚,中国是最早发现这一几何宝藏的国家。目前初二学生学,教材的证明方法采用赵爽弦图,证明使用青朱出入图。 勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,是数形结合的纽带之一。 直角三角形两直角边的平方和等于斜边的平方。如果用a、b和c分别表示直角三角形的两直角边和斜边,那么a2 b2=c2。勾股定理...全部
1、勾股定理是余弦定理的一个特例。这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”或者“百牛定理“。(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”),法国、比利时人又称这个定理为“驴桥定理”。
他们发现勾股定理的时间都比中国晚,中国是最早发现这一几何宝藏的国家。目前初二学生学,教材的证明方法采用赵爽弦图,证明使用青朱出入图。 勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,是数形结合的纽带之一。
直角三角形两直角边的平方和等于斜边的平方。如果用a、b和c分别表示直角三角形的两直角边和斜边,那么a2 b2=c2。勾股定理指出:直角三角形两直角边(即“勾”“股”短的为勾,长的为股)边长平方和等于斜边(即“弦”)边长的平方。
也就是说设直角三角形两直角边为a和b,斜边为c,那么 a的平方 b的平方=c的平方 a2 b2=c2 勾股定理现发现约有500种证明方法,是数学定理中证明方法最多的定理之一。 中国古代著名数学家商高说:“若勾三,股四,则弦五。
”它被记录在了《九章算术》中。2、勾股定理的逆定理是判断三角形为锐角或直角的一个简单的方法其中c为最长边: 如果a×a b×b=c×c,则△ABC是直角三角形。 如果a×a b×b>c×c,则△ABC是锐角三角形。
如果a×a b×b<c×c,则△ABC是钝角三角形。勾股定理逆定理的证明: 1、反证法 令角C不是直角, 则a^2 b^2=c^2不成立, 所以矛盾, 所以角C是直角。 勾股定理逆定理 如果三角形的三边长a、b、c满足条件a^2 b^2=c^2, 那么C边所对的角是直角。
3、三角函数Cos90 如图:已知AB^2 BC^2=AC^2, 而任一三角形的边之间均满足, AC^2=AB^2 BC^2-2AB*BA*COSB , 比较两式得 , COSB=0 , B=90度。
勾股定理的逆定理:勾股定理的逆定理是判断三角形为钝角、锐角或直角的一个简单的方法,其中AB=c为最长边。在一个三角形中,两条边的平方和等于另一条边的平方,那么这个三角形就是直角三角形。 这就是勾股定理的逆定理。
概论 勾股定理的逆定理是判断三角形为锐角或钝角的一个简单的方法,其中c为最长边: 如果A×A B×B=C×C,则△ABC是直角三角形。 如果A×A B×B>C×C,则△ABC是锐角三角形。如果A×A B×B<C×C,则△ABC是钝角三角形。
收起