请问高数中的"序列"分布函数"和集合有何区别?
分布函数
设X是一个随机变量,x是任意实数,函数
F(x)=P{X≤x}
称为X的分布函数。
对于任意实数x1,x2(x1<x2),有
P{x1<X≤x2}=P{X≤x2}-P{X≤x1}=F(x2)-F(x1),
因此,若已知X的分布函数,就可以知道X落在任一区间(x1,x2]上的概率,在这个意义上说,分布函数完整地描述了随机变量的统计规律性。
分布函数是一个普遍的函数,正是通过它,我们将能用数学分析的方法来研究随机变量。
如果将X看成是数轴上的随机点的坐标,那么,分布函数F(x)在x处的函数值就表示X落在区间(-∞,x]上的概率。
集合的概念:
一定范围的,确定的,可以区别的事...全部
分布函数
设X是一个随机变量,x是任意实数,函数
F(x)=P{X≤x}
称为X的分布函数。
对于任意实数x1,x2(x1<x2),有
P{x1<X≤x2}=P{X≤x2}-P{X≤x1}=F(x2)-F(x1),
因此,若已知X的分布函数,就可以知道X落在任一区间(x1,x2]上的概率,在这个意义上说,分布函数完整地描述了随机变量的统计规律性。
分布函数是一个普遍的函数,正是通过它,我们将能用数学分析的方法来研究随机变量。
如果将X看成是数轴上的随机点的坐标,那么,分布函数F(x)在x处的函数值就表示X落在区间(-∞,x]上的概率。
集合的概念:
一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元。如(1)阿Q正传中出现的不同汉字(2)全体英文大写字母
集合的分类:
并集:以属于A或属于B的元素为元素的集合成为A与B的并(集)
交集: 以属于A且属于B的元素为元素的集合成为A与B的交(集)
差:以属于A而不属于B的元素为元素的集合成为A与B的差(集)
注:空集属于任何集合,但它不属于任何元素。
某些指定的对象集在一起就成为一个集合,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。
集合的性质:
确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。
互异性:集合中任意两个元素都是不同的对象。不能写成{1,1,2}应写成{1,2}
无序性:{a,b,c}{c,b,a}是同一个集合。
其实这些谈不上区别,就是根本搭不上的概念
。
收起