飞着的箭在任何瞬间都是既非静止又非运动的。如果瞬间是不可分的,箭就不可能运动,因为如果它动了,瞬间就立即是可以分的了。但是时间是由瞬间组成的,如果箭在任何瞬间都是不动的,则箭总是保持静止。所以飞出的箭不能处于运动状态。
当人类面对这深邃的宇宙开始思考一些问题的时候,他们就已经开始研究运动了,而运动的存在性问题是其中最为重要、也是最令人困惑的第一个问题。
表面上看来,运动的存在性是显然的,然而芝诺却最早以简单的论证“证明”了运动不可能存在,他也由于这一悖论式的证明而为后人所永远铭记。 芝诺是古希腊时期爱利亚学派的主要成员,这个学派的基本思想是否认现实世界中的任何运动变化,认为它们只是真实存在的表面现象。芝诺为了证明他们的观点,第一个设想和论证了物体运动中存在的令人不安的困难。
1。1 你追不上乌龟
那么芝诺是如何论证运动是不可能的呢?喜欢挑战的你一定等不急了,并很想找出芝诺论证的漏洞。好,...全部
当人类面对这深邃的宇宙开始思考一些问题的时候,他们就已经开始研究运动了,而运动的存在性问题是其中最为重要、也是最令人困惑的第一个问题。
表面上看来,运动的存在性是显然的,然而芝诺却最早以简单的论证“证明”了运动不可能存在,他也由于这一悖论式的证明而为后人所永远铭记。
芝诺是古希腊时期爱利亚学派的主要成员,这个学派的基本思想是否认现实世界中的任何运动变化,认为它们只是真实存在的表面现象。芝诺为了证明他们的观点,第一个设想和论证了物体运动中存在的令人不安的困难。
1。1 你追不上乌龟
那么芝诺是如何论证运动是不可能的呢?喜欢挑战的你一定等不急了,并很想找出芝诺论证的漏洞。好,让我们就从“你追不上乌龟”开始吧!如果你不能驳倒芝诺,那你只得承认自己追不上乌龟了。
芝诺的论证是这样的:你若想追上乌龟,你必须首先到达乌龟开始跑的位置,但当你到达乌龟开始跑的位置时,乌龟在这段时间里已经跑到前面去了,当你再想去追乌龟时,你面临同样的问题,即你仍必须首先要跑到乌龟此刻的位置,而等你跑到了乌龟又向前移动了。
好,虽然你比乌龟跑得快,但你也只能按上述过程逐渐逼近乌龟,这样的过程将无限次地出现,而在每一阶段乌龟总在你前头。由于有限的你无法完成这无限个阶段,于是你永远也追不上乌龟。
图1 你追不上乌龟
“但是,我绝对可以追上乌龟!”你可能忍不住要争辩道。
请别急,芝诺将进一步论证你根本就无法开始运动,更不用说追上乌龟了。你看,如果你想到达乌龟开始跑的位置,你就必须首先到达这段距离的中点,而你若想到达这个中点,你又必须首先到达这一半距离的中点,如此等等。
由于这一二分过程可以无限地进行下去,而你无法完成无限个过程,于是你实际上都无法离开起点。
“但是,……”,你也许已陷入了沉思之中。是的,尽管芝诺的论证简单易懂,但是要找出其论证中的问题却并不容易。
实际上,自从芝诺悖论提出以来,人们一直试图指出其中的错误所在,然而直到今天,仍然没有一个完全满意的解答。
另一方面,即使我们清楚地知道物体可以从空间中的一个位置运动到另一个位置,但是我们却不知道物体是怎样完成这种运动的,前者只是运动的结果,而后者才是运动本身。
因此,对芝诺悖论的分析和解决也将帮助我们了解运动是怎样完成的,并大大加深我们对运动本身的理解。
[附] 芝诺悖论1
一般认为,芝诺悖论由四个论证组成,它们是二分法、阿基里斯、飞矢不动和运动场。
芝诺首先假定时间和空间是连续的2,即假定运动是连续的。为了证明这种连续运动是不可能的,芝诺考察了两种情况,它们是孤立物体的连续运动情况和两个物体的相对连续运动情况。
图2 二分法
对于孤立物体的连续运动情况,他提出了一种“二分法”证明。
芝诺认为,任何一个物体要想从A点运动到B点,必须首先到达AB的中点C,而要到达C点,他又必须首先到达AC的中点D,同样,要到达D点,他又必须首先到达AD的中点,等等。由于时间和空间是连续的,这一二分过程总可以无限地进行下去,于是该物体实际上都无法离开A点,因此孤立物体的连续运动是不可能的。
图3 阿基里斯
对于两个物体的相对连续运动情况,芝诺提出了一个称为“阿基里斯”的证明。他说,阿基里斯若想追上乌龟,他必须首先到达乌龟开始跑的位置,但当他到达乌龟开始跑的位置时,乌龟在这段时间里已经跑到前面去了,当阿基里斯再想去追乌龟时,他面临同样的问题,即他仍必须首先要跑到乌龟此刻的位置,而等他跑到了乌龟又向前移动了。
虽然阿基里斯比乌龟跑得快,但他也只能按上述过程逐渐逼近乌龟,这样的过程可以无限次地出现,在每一阶段乌龟总在他前头。由于阿基里斯无法完成这无限个阶段,于是他永远也追不上乌龟,从而两个物体的相对连续运动也是不可能的。
其次,芝诺假定时间和空间是分立的,即假定运动是间断的。为了证明这种间断运动也是不可能的,芝诺同样考察了两种情况,即孤立物体的间断运动情况和两个物体的相对间断运动情况。
图4 飞矢不动
对于孤立物体的间断运动情况,他提出了“飞矢不动”论证3。
芝诺说,由于运动是位置的变动,而飞矢在任何一个时间单元(或时刻)都呆在一个位置上,即在任何时间单元(或时刻)它的位置都没有变化,于是任何一个时间单元(或时刻)的飞矢是不动的,因此飞矢是不动的。
图5 运动场
对于两个物体的相对间断运动情况,芝诺提出了“运动场”论证。他假设有A、B、C三列物体,物体B、C相对于A的运动方向相反,并且每一时间单元物体B、C相对于A都运动一个空间单元。
于是,在一个时间单元过后物体B、C之间相对移动了两个空间单元,从而物体B相对于C移动一个空间单元需要半个时间单元,而物体B相对于A移动一个空间单元却需要一个时间单元,于是一个时间单元将等于半个时间单元。
这一结论明显是不成立的,因此两个物体的相对间断运动也是不可能的。
1。2 哪里出了错?
沉思片刻的你,现在找到芝诺论证的漏洞了吗?也许你还在疑惑,“我追不上乌龟,这怎么可能呢?!一定是哪里出了错……”
是的,芝诺的结论显然是不对的,每个清醒的人都知道。
然而,他的论证却并不一定就是错误的,为什么呢?因为他是在一定假设的前提下证明你追不上乌龟的,而这些假设不一定都正确。芝诺的假设包括:时间和空间是连续的,运动也是连续的。尽管这些假设看起来似乎是显然的,但是现代科学却已经暗示了它们很可能并不是正确的。
因此,如果芝诺的论证没有问题,那么2000多年前的他就已经证明了时间、空间和运动不可能都是连续的。这是一个惊人的结论,它完全违背我们的常识,但芝诺成功了吗?让我们再来看一看他的具体论证。
可以看出,芝诺论证的关键在于他认为物体无法经过无穷多个点或区间而在连续时空中完成运动,但是他的根据呢?仔细检查后你会发现,没有!难道这是一条十分明显的、不需要进一步说明的公理吗?或许初看起来我们也会认为物体无法经过无穷多个点或区间,但喜欢刨根问底的人还是想问问芝诺这是为什么。
当然,芝诺是无法回答了,那就让我们来分析一下这个看法是否正确吧。
首先,我们必须弄清“完成”的含义。所谓“完成”是指过程的发生只需要有限的时间,它本质上是以时间概念为基础的。于是,问题成为:物体是否能够在有限时间内经过空间中的无穷多个点或区间?根据时间和空间的连续性假设,有限的空间含有无穷多个点或区间,而有限的时间同样含有无穷多个时刻或时间区间,并且它们可以形成一个一一对应关系。
因此,原则上物体可以利用有限时间内的无穷多个时刻或时间区间来通过有限空间中的无穷多个点或区间,从而物体便可以自然地在有限时间内经过空间中的无穷多个点或区间了。于是,物体是可以(在连续时空中)经过无穷多个点或区间而完成运动的。
看来,芝诺所依据的似乎明显正确的看法其实是错误的,他在强调空间连续性的同时却忽略了时间的连续性。
图6 意识无法追踪运动
然而,为什么我们总有一种感觉,认为物体无法经过无穷多个点或区间呢?这个问题很重要,因为芝诺也许正是利用了这种感觉才让人们为他的论证所迷惑。
为此,让我们回忆一下我们通常是如何来理解无穷的完成过程的。你会注意到,我们在理解无穷的完成时,总是不知不觉地要从心理上去追踪它的完成,如追踪物体经过无穷多个点或区间。然而,由于我们追踪物体经过任何一个点或区间都需要有限的时间,从而我们便无法追踪物体经过无穷多个点或区间,因为我们的追踪将需要无穷长的时间!但是,这并不妨碍物体自己经过无穷多个点或区间,毕竟,我们没有理由认为无法通过意识追踪的过程实际上也无法完成。
找到了困惑的根源,你一定有一种如释负重的感觉吧,看来理解运动问题其实并不难。是的,有时你离答案仅一步之遥,而跨过去你的思想就会海阔天空,关键在于你是否愿意多花一点时间来思考了。理解总是令人愉悦的!而理解之前的困惑同样是一种妙不可言的经历,它会帮助你真正认识自己,并让你成为一个有理性的、智慧的人。
现在,你一定确信并理解自己可以追上乌龟了,衷心地祝贺你。
1。3 运动的世界
无论怎样,经验都在确定无疑地告诉我们:运动的的确确存在着。太阳东升西落,月儿圆了又缺,欢快的鸟儿在树林间啾啾鸣叫,蜿蜒的小溪在山谷里潺潺流淌,整个自然都在跳运动之舞!如果不存在运动,你怎能读到这些文字,又怎能看到这本小书呢?实际上,一切都将不复存在。
现在,我们完全可以拨去芝诺悖论的迷雾,而对运动的存在性问题给出一个正确的回答了,即物质运动是一种客观存在,它不仅存在着,而且还将具有它的存在形式和规律。那么,自然界中物质运动的真实形式和演化规律究竟是怎样的呢?继续前行,在我们的探险之路上还将有更奇妙的发现。
收起