三角形ABC中,三条边a、b、c
∵2b=a+c
∴2sinB=sinA+sinC(利用正弦定理) 将左右两边分别化开,得如下:
sinA+sinC=2[sin(A+c)/2]*[cos(A-c)/2]=2cos(B/2)*[cos(A-c)/2]
2sinB=4*sin(B/2)*cos(B/2)
即2cos(B/2)*[cos(A-c)/2]=4*sin(B/2)*cos(B/2) [∵cos(B/2)>0]
即cos(A-c)/2=2sin(B/2)…………①
tan(A/2)tan(C/2)
=[sin(A/2)/cos(A/2)]*[sin(C/2)/cos(C/2)]
=sin(A/2)*sin(C/2)/...全部
∵2b=a+c
∴2sinB=sinA+sinC(利用正弦定理) 将左右两边分别化开,得如下:
sinA+sinC=2[sin(A+c)/2]*[cos(A-c)/2]=2cos(B/2)*[cos(A-c)/2]
2sinB=4*sin(B/2)*cos(B/2)
即2cos(B/2)*[cos(A-c)/2]=4*sin(B/2)*cos(B/2) [∵cos(B/2)>0]
即cos(A-c)/2=2sin(B/2)…………①
tan(A/2)tan(C/2)
=[sin(A/2)/cos(A/2)]*[sin(C/2)/cos(C/2)]
=sin(A/2)*sin(C/2)/[cos(A/2)*cos(C/2)]
=-(1/2)[cos(A+c)/2- cos(A-c)/2]/(1/2)[cos(A+c)/2+ cos(A-c)/2]
=-[cos(A+c)/2- cos(A-c)/2]/[cos(A+c)/2+ cos(A-c)/2]
=-[sin(B/2)-cos(A-c)/2]/[sin(B/2)+cos(A-c)/2]
以①代入
=-[sin(B/2)-2sin(B/2)]/[sin(B/2)+2sin(B/2)]
=-(-1/3)
=1/3。
收起