化简题化简[cos40+sin5
[cos40+sin50(1+√3 *tan10)]/[sin70(1+cos40)] =
[cos40+sin50(1+√3 *sin10/cos10]/[sin70(1+cos40)] =
{cos40+sin50[(cos10+√3 *sin10)/cos10]}/[sin70(1+cos40)] =
{cos40+2sin50[(1/2cos10+√3/2 *sin10)/cos10]}/[sin70(1+cos40)] =
{cos40+2sin50[(sin30cos10+cos30*sin10)/cos10]}/[sin70(1+cos40)] =
{cos40+2sin50...全部
[cos40+sin50(1+√3 *tan10)]/[sin70(1+cos40)] =
[cos40+sin50(1+√3 *sin10/cos10]/[sin70(1+cos40)] =
{cos40+sin50[(cos10+√3 *sin10)/cos10]}/[sin70(1+cos40)] =
{cos40+2sin50[(1/2cos10+√3/2 *sin10)/cos10]}/[sin70(1+cos40)] =
{cos40+2sin50[(sin30cos10+cos30*sin10)/cos10]}/[sin70(1+cos40)] =
{cos40+2sin50[sin40)/cos10]}/[sin70(1+cos40)] =
{cos40+[2cos40sin40)/cos10]}/[sin70(1+cos40)] =
{cos40+[sin80)/cos10]}/[sin70(1+cos40)] =
{cos40+[cos10)/cos10]}/[sin70(1+cos40)] =
{cos40+1}/[sin70(1+cos40)] =
1/sin70
。
收起