求M的取值范围使方程x^2-mx
结合函数y=f(x)=x^2-mx-m+3的图像来考虑
1)二根在[-4,0]之间时
1,二根存在--->△=m^2-4(-m+3)=m^2+4m-12=(m+6)(m-2)>=0--->m==2
2,对称轴在[-4,,0]内--->-4-80且f(0)>0--->16+4m-m+3>0且-m+3>0--->m0且m-19/3△>=0--->m==0。
2,对称轴在区间(-5,+∞)内--->m/2>-5--->m>-10
3,f(-5)>0--->25+5m-m+3>0--->4m+28>0--->m>-7
取交集得-70,f(1)0
--->-m+3>0,-2m+40
--->m2...全部
结合函数y=f(x)=x^2-mx-m+3的图像来考虑
1)二根在[-4,0]之间时
1,二根存在--->△=m^2-4(-m+3)=m^2+4m-12=(m+6)(m-2)>=0--->m==2
2,对称轴在[-4,,0]内--->-4-80且f(0)>0--->16+4m-m+3>0且-m+3>0--->m0且m-19/3△>=0--->m==0。
2,对称轴在区间(-5,+∞)内--->m/2>-5--->m>-10
3,f(-5)>0--->25+5m-m+3>0--->4m+28>0--->m>-7
取交集得-70,f(1)0
--->-m+3>0,-2m+40
--->m2且m7/3 收起