三角形中,求证cosa^2+co
三角形中,求证(cosA)^2+(cosB)^2+(cosC)^2+2cosAcosBcosC=1
证明:(cosA)^2+(cosB)^2+(cosC)^2+2cosAcosBcosC
=cosA*[cosA+2cosB*cosC]+(cosB)^2+(cosC)^2
=-cos(B+C)*[-cos(B+C)+2cosB*cosC]+(cosB)^2+(cosC)^2
=-cos(B+C)*cos(B-C)+(cosB)^2+(cosC)^2
=-(1/2)*[cos(2B)+cos(2C)]+(cosB)^2+(cosC)^2
=-(1/2)*[2(cosB)^2-1+2(cosC)...全部
三角形中,求证(cosA)^2+(cosB)^2+(cosC)^2+2cosAcosBcosC=1
证明:(cosA)^2+(cosB)^2+(cosC)^2+2cosAcosBcosC
=cosA*[cosA+2cosB*cosC]+(cosB)^2+(cosC)^2
=-cos(B+C)*[-cos(B+C)+2cosB*cosC]+(cosB)^2+(cosC)^2
=-cos(B+C)*cos(B-C)+(cosB)^2+(cosC)^2
=-(1/2)*[cos(2B)+cos(2C)]+(cosB)^2+(cosC)^2
=-(1/2)*[2(cosB)^2-1+2(cosC)^2-1]+(cosB)^2+(cosC)^2
=1
三角形中,求证cosa^2+cosb^2+cosc^2+2cosacosbcosc=1
cosa^2+cosb^2+cosc^2+2cosacosbcosc
=cosa*[cosa+2cosb*cosc]+(1/2)*[cos(2b)+cos(2c)+2]
=-cos(b+c)*[-cos(b+c)+2cosb*cosc]+(1/2)*[cos(2b)+cos(2c)]+1
=-cos(b+c)*cos(b-c)+cos(b+c)*cos(b-c)+1
=1
。
收起