搜索
首页 教育/科学 理工学科 数学

1.罗尔定理为何不说f(x)在[a,b]可导

1.罗尔定理为何不说f(x)在[a,b]可导

全部回答

2006-03-30

0 0
    我想可从这个角度加以说明:数学中的定理,总是希望以尽可能弱的条件得到更一般化的结论,因此若能在更弱的条件下成立的结论就当然不必用有更多限制的条件。 对罗尔定理,它只要求f(x)在开区间(a,b)可导,这是比在[a,b]可导更弱的一个条件,即它不要求函数在两个端点处可导。
      举个例子:考虑函数y=√(1-x^2)(即圆心在原点的单位圆的上半部分),虽然这个函数在两个端点处的导数不存在(为无穷大,这可从这两个端点处的切线垂直于x轴得到说明),但显然它在x=0处的导数为0(即在x=0处的切线平行于x轴),即罗尔定理的结论是成立的。
  故要使罗尔定理结论成立不必要非要要求在两个端点处可导。

类似问题换一批

热点推荐

热度TOP

相关推荐
加载中...

热点搜索 换一换

教育/科学
数学
院校信息
升学入学
理工学科
出国/留学
职业教育
人文学科
外语学习
学习帮助
K12
理工学科
数学
农业科学
生物学
建筑学
心理学
天文学
工程技术科学
化学
环境学
地球科学
生态学
物理学
数学
数学
举报
举报原因(必选):
取消确定举报