已知x、y∈[-π/4,π/4],a∈R,且满足:x^3+sinx-2a=0,4y^3+sinycosy+a=0.求cos(x+2y)的值。
柳***
2013-08-10
山***
l***
T***
2012-06-23
1。 x^2+xy+y^2=0,当x=0时,y=0,则分式无意义,不予考虑 ===> (x/y)^2+(x/y)+1=0 ===> x/y=(-1±√3i)/2 ①当x/y=(-1+√3i)/2时: x/(x+y)=(x/y)/[1+(x/y)]=[(-1+√3i)/2]/[1+(-1+√3i)/2] =(1+√3i)/2 =cos(π/3)+isin(π/3) y/(x+y)=1/[(1/y)+1] =(1-√3i)/2 =cos(-π/3)+isin(-π/3) 所以,[x/(x+y)]^2005+[y/(x+y)]^2005 =[x/(x+y)]*[x/(x+y)]^2004+[y/...全部
1。 x^2+xy+y^2=0,当x=0时,y=0,则分式无意义,不予考虑 ===> (x/y)^2+(x/y)+1=0 ===> x/y=(-1±√3i)/2 ①当x/y=(-1+√3i)/2时: x/(x+y)=(x/y)/[1+(x/y)]=[(-1+√3i)/2]/[1+(-1+√3i)/2] =(1+√3i)/2 =cos(π/3)+isin(π/3) y/(x+y)=1/[(1/y)+1] =(1-√3i)/2 =cos(-π/3)+isin(-π/3) 所以,[x/(x+y)]^2005+[y/(x+y)]^2005 =[x/(x+y)]*[x/(x+y)]^2004+[y/(x+y))]*[y/(x+y)]^2005 =[x/(x+y)]*[cos(668π)+isin(668π)]+[y/(x+y)]*[cos(-668π)+isin(-668π)] =[x/(x+y)]*(1+0)+[y/(x+y)]*(1+0) =[x/(x+y)]+[y/(x+y)] =1 同理,当x/y=(-1-√3i)/2时也有同样结果。 2。 令a/b=b/c=c/a=k 则: a=bk b=ck c=ak 上述等式左右分别相乘得到:abc=abc*k^3 所以,k=1 则,a=b=c 所以,(a+b-c)/(a-b+c)=1。收起
广州人流去玛莱医院好不好?
453人阅读
泉州哪家男科好?
100人阅读
转轮术是什么意思
0人阅读
胎心监护异常不一定就是缺氧 给宝妈们提个醒?
12095人阅读
什么是“混合牙列期”?
197人阅读
哈尔滨宾县医院有没有无痛引产
2019-07-14
2019-09-23
2019-03-12
2019-03-29
2017-09-15
2017-05-03
2017-10-20
2018-01-05
2018-05-10
2018-03-09
2023-09-16
2024-02-21
2024-03-04
2024-01-23
2024-01-26
2024-02-02
2024-01-22
2024-01-03
2023-11-22
2023-12-01
2023-12-11
2023-11-23
2023-11-28
2023-11-24
2023-11-20
2023-11-29
2023-11-21
2023-12-02
广告或垃圾信息
不雅词句或人身攻击
色情淫秽
诈骗
激进时政或意识形态话题
侵犯他人隐私
其它违法和不良信息