请教高一数学题1已知25*sin
1、C对
a在第二象限内,即2kπ+π/20,即m>-2
又因cos3a≠0,即a≠[kπ+(π/2)]/3 ,
令t=cosa,t∈[-1,1],且t≠0,±√3/2, t^2∈(0,1],且t^2≠3/4, 则
cos2a=2(cosa)^2-1=2t^2-1
(sina)^4=[1-(cosa)^2]^2=(1-t^2)^2
cos3a=4(cosa)^3-3cosa=t(4t^2-3)
所以原式化为:
[8t(1-t^2)^2+5t(2t^2-1)-3t]/t(4t^2-3)=log(1/2) (m+2)即:
[8(1-t^2)^2+5(2t^2-1)-3]/(4t^2-3)=-l...全部
1、C对
a在第二象限内,即2kπ+π/20,即m>-2
又因cos3a≠0,即a≠[kπ+(π/2)]/3 ,
令t=cosa,t∈[-1,1],且t≠0,±√3/2, t^2∈(0,1],且t^2≠3/4, 则
cos2a=2(cosa)^2-1=2t^2-1
(sina)^4=[1-(cosa)^2]^2=(1-t^2)^2
cos3a=4(cosa)^3-3cosa=t(4t^2-3)
所以原式化为:
[8t(1-t^2)^2+5t(2t^2-1)-3t]/t(4t^2-3)=log(1/2) (m+2)即:
[8(1-t^2)^2+5(2t^2-1)-3]/(4t^2-3)=-log2 (m+2)
2t^2(4t^2-3)/(4t^2-3)=-log2 (m+2)
2t^2=-log2 (m+2)
-2t^2=log2 (m+2)
因0 收起