搜索
首页 教育/科学 理工学科 数学

高中数学所有解题方法

公式全,例子典型,步骤清晰,

全部回答

2012-04-14

0 0
    讲一下解析几何 解析几何常规题型及方法 : 全国各省市文、理高考试卷,普遍有一个规律:占解几分值接近一半的填空、选择题难度不大,中等及偏上的学生能将对应分数收入囊中;而占解几分值一半偏上的解答题得分很不理想,其原因主要体现在以下几个方面:(1)解析几何是代数与几何的完美结合,解析几何的问题可以涉及函数、方程、不等式、三角、几何、数列、向量等知识,形成了轨迹、最值、对称、范围、参系数等多种问题,因而成为高中数学综合能力要求最高的内容之一(2)解析几何的计算量相对偏大(3)在大家的“拿可拿之分”的理念下,大题的前三道成了兵家必争之地,而排放位置比较尴尬的第21题或22题(有时20题)就成了很多人遗忘的角落,加之时间的限制,此题留白的现象比较普遍。
     鉴于解几的特点,建议在复习中做好以下几个方面.由于高考中解几内容弹性很大。有容易题,有中难题。因此在复习中基调为狠抓基础。不能因为高考中的解几解答题较难,就拼命地去搞难题,套新题,这样往往得不偿失;端正心态:不指望将所有的题攻下,将时间用在巩固基础、对付“跳一跳便可够得到”的常规题上,这样复习,高考时就能保证首先将选择、填空题拿下,然后对于大题的第一个小问争取得分,第二小题能拿几分算几分。
     高考核心考点 1、准确理解基本概念(如直线的倾斜角、斜率、距离、截距等) 2、熟练掌握基本公式(如两点间距离公式、点到直线的距离公式、斜率公式、定比分点的坐标公式、到角公式、夹角公式等) 3、熟练掌握求直线方程的方法(如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况、截距是否为0等等) 4、在解决直线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算 5、了解线性规划的意义及简单应用 6、熟悉圆锥曲线中基本量的计算 7、掌握与圆锥曲线有关的轨迹方程的求解方法(如:定义法、直接法、相关点法、参数法、交轨法、几何法、待定系数法等) 8、掌握直线与圆锥曲线的位置关系的常见判定方法,能应用直线与圆锥曲线的位置关系解决一些常见问题 四、常规题型及解题的技巧方法 A:常规题型方面 (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为 , ,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。
     典型例题 给定双曲线 。过A(2,1)的直线与双曲线交于两点 及 ,求线段 的中点P的轨迹方程。 分析:设 , 代入方程得 , 。 两式相减得 。
   又设中点P(x,y),将 , 代入,当 时得 。   又 , 代入得 。 当弦 斜率不存在时,其中点P(2,0)的坐标也满足上述方程。
   因此所求轨迹方程是 说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。 (2)焦点三角形问题 椭圆或双曲线上一点P,与两个焦点 、 构成的三角形问题,常用正、余弦定理搭桥。
     典型例题 设P(x,y)为椭圆 上任一点, , 为焦点, , 。 (1)求证离心率 ; (2)求 的最值。 分析:(1)设 , ,由正弦定理得 。
   得 , (2) 。 当 时,最小值是 ; 当 时,最大值是 。   (3)直线与圆锥曲线位置关系问题 直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式,应特别注意数形结合的办法 典型例题 (1)求证:直线与抛物线总有两个不同交点 (2)设直线与抛物线的交点为A、B,且OA⊥OB,求p关于t的函数f(t)的表达式。
     (1)证明:抛物线的准线为 由直线x+y=t与x轴的交点(t,0)在准线右边,得 故直线与抛物线总有两个交点。
   (2)解:设点A(x1,y1),点B(x2,y2) (4)圆锥曲线的有关最值(范围)问题 圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。   若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。
   若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。 典型例题 已知抛物线y2=2px(p>0),过M(a,0)且斜率为1的直线L与抛物线交于不同的两点A、B,|AB|≤2p (1)求a的取值范围;(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值。
     分析:这是一道直线与圆锥曲线位置关系的问题,对于(1),可以设法得到关于a的不等式,通过解不等式求出a的范围,即:“求范围,找不等式”。或者将a表示为另一个变量的函数,利用求函数的值域求出a的范围;对于(2)首先要把△NAB的面积表示为一个变量的函数,然后再求它的最大值,即:“最值问题,函数思想”。
     解:(1)直线L的方程为:y=x-a,将y=x-a 代入抛物线方程y2=2px,得:设直线L与抛物线两交点的坐标分别为A(x1,y1),B(x2,y2),则 ,又y1=x1-a,y2=x2-a, 解得: (2)设AB的垂直平分线交AB与点Q,令其坐标为(x3,y3),则由中点坐标公式得: , 所以|QM|2=(a+p-a)2+(p-0)2=2p2。
    又△MNQ为等腰直角三角形,所以|QM|=|QN|= ,所以S△NAB= ,即△NAB面积的最大值为 2。 (5)求曲线的方程问题 1.曲线的形状已知--------这类问题一般可用待定系数法解决。
   典型例题 已知直线L过原点,抛物线C 的顶点在原点,焦点在x轴正半轴上。  若点A(-1,0)和点B(0,8)关于L的对称点都在C上,求直线L和抛物线C的方程。 分析:曲线的形状已知,可以用待定系数法。
   设出它们的方程,L:y=kx(k≠0),C:y2=2px(p>0) 设A、B关于L的对称点分别为A/、B/,则利用对称性可求得它们的坐标分别为: A/( ),B( )。  因为A、B均在抛物线上,代入,消去p,得:k2-k-1=0。
  解得:k= ,p= 。 所以直线L的方程为:y= x,抛物线C的方程为y2= x。 2.曲线的形状未知-----求轨迹方程 典型例题 已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1, 动点M到圆C的切线长与|MQ|的比等于常数 ( >0),求动点M的轨迹方程,并说明它是什么曲线。
     分析:如图,设MN切圆C于点N,则动点M组成的集合是:P={M||MN|= |MQ|},由平面几何知识可知:|MN|2=|MO|2-|ON|2=|MO|2-1,将M点坐标代入,可得:( 2-1)(x2+y2)-4 2x+(1+4 2)=0。
   当 =1时它表示一条直线;当 ≠1时,它表示圆。  这种方法叫做直接法。 (6) 存在两点关于直线对称问题 在曲线上两点关于某直线对称问题,可以按如下方式分三步解决:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。
  (当然也可以利用韦达定理并结合判别式来解决) 典型例题 已知椭圆C的方程 ,试确定m的取值范围,使得对于直线 ,椭圆C上有不同两点关于直线对称。   分析:椭圆上两点 , ,代入方程,相减得 。
   又 , , ,代入得 。 又由 解得交点 。 交点在椭圆内,则有 ,得 。 (7)两线段垂直问题 圆锥曲线两焦半径互相垂直问题,常用 来处理或用向量的坐标运算来处理。
     典型例题 已知直线 的斜率为 ,且过点 ,抛物线 ,直线 与抛物线C有两个不同的交点(如图)。 (1)求 的取值范围; (2)直线 的倾斜角 为何值时,A、B与抛物线C的焦点连线互相垂直。
   分析:(1)直线 代入抛物线方程得 , 由 ,得 。   (2)由上面方程得 , ,焦点为 。 由 ,得 , 或 B:解题的技巧方面 在教学中,学生普遍觉得解析几何问题的计算量较大。
  事实上,如果我们能够充分利用几何图形、韦达定理、曲线系方程,以及运用“设而不求”的策略,往往能够减少计算量。  下面举例说明: (1)充分利用几何图形 解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,并结合平面几何知识,这往往能减少计算量。
   典型例题 设直线 与圆 相交于P、Q两点,O为坐标原点,若 ,求 的值。   解: 圆 过原点,并且 , 是圆的直径,圆心的坐标为 又 在直线 上, 即为所求。
   评注:此题若不充分利用一系列几何条件:该圆过原点并且 ,PQ是圆的直径,圆心在直线 上,而是设 再由 和韦达定理求 ,将会增大运算量。   评注:此题若不能挖掘利用几何条件 ,点M是在以OP为直径的圆周上,而利用参数方程等方法,计算量将很大,并且比较麻烦。
   二。 充分利用韦达定理及“设而不求”的策略 我们经常设出弦的端点坐标而不求它,而是结合韦达定理求解,这种方法在有关斜率、中点等问题中常常用到。   典型例题 已知中心在原点O,焦点在 轴上的椭圆与直线 相交于P、Q两点,且 , ,求此椭圆方程。
   解:设椭圆方程为 ,直线 与椭圆相交于P 、 两点。 由方程组 消去 后得 由 ,得 (1) 又P、Q在直线 上, 把(1)代入,得 , 即 化简后,得 (4) 由 ,得 把(2)代入,得 ,解得 或 代入(4)后,解得 或 由 ,得 。
     所求椭圆方程为 评注:此题充分利用了韦达定理及“设而不求”的策略,简化了计算。 三。 充分利用曲线系方程 利用曲线系方程可以避免求曲线的交点,因此也可以减少计算。
   典型例题 求经过两已知圆 和 0的交点,且圆心在直线 : 上的圆的方程。   解:设所求圆的方程为: 即 , 其圆心为C( ) 又C在直线 上, ,解得 ,代入所设圆的方程得 为所求。
   评注:此题因利用曲线系方程而避免求曲线的交点,故简化了计算。 四、充分利用椭圆的参数方程 椭圆的参数方程涉及到正、余弦,利用正、余弦的有界性,可以解决相关的求最值的问题.这也是我们常说的三角代换法。
     典型例题 P为椭圆 上一动点,A为长轴的右端点,B为短轴的上端点,求四边形OAPB面积的最大值及此时点P的坐标。 五、线段长的几种简便计算方法 ① 充分利用现成结果,减少运算过程 一般地,求直线与圆锥曲线相交的弦AB长的方法是:把直线方程 代入圆锥曲线方程中,得到型如 的方程,方程的两根设为 , ,判别式为△,则 ,若直接用结论,能减少配方、开方等运算过程。
     例 求直线 被椭圆 所截得的线段AB的长。 ② 结合图形的特殊位置关系,减少运算 在求过圆锥曲线焦点的弦长时,由于圆锥曲线的定义都涉及焦点,结合图形运用圆锥曲线的定义,可回避复杂运算。
   例 、 是椭圆 的两个焦点,AB是经过 的弦,若 ,求值 ③ 利用圆锥曲线的定义,把到焦点的距离转化为到准线的距离 例 点A(3,2)为定点,点F是抛物线 的焦点,点P在抛物线 上移动,若 取得最小值,求点P的坐标。
    。

类似问题换一批

热点推荐

热度TOP

相关推荐
加载中...

热点搜索 换一换

教育/科学
数学
院校信息
升学入学
理工学科
出国/留学
职业教育
人文学科
外语学习
学习帮助
K12
理工学科
数学
农业科学
生物学
建筑学
心理学
天文学
工程技术科学
化学
环境学
地球科学
生态学
物理学
数学
数学
举报
举报原因(必选):
取消确定举报