和差化积公式的内容是?
和差化积公式即和差化积。和差化积公式,包括正弦、余弦和正切的和差化积公式,是三角函数中的一组恒等式。
正弦、余弦的和差化积
公式
指高中数学三角函数部分的一组恒等式
sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】
以上四组公式可以由积化和差公式推导得到
证明过程
sin α+sin β=...全部
和差化积公式即和差化积。和差化积公式,包括正弦、余弦和正切的和差化积公式,是三角函数中的一组恒等式。
正弦、余弦的和差化积
公式
指高中数学三角函数部分的一组恒等式
sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】
以上四组公式可以由积化和差公式推导得到
证明过程
sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程
因为
sin(α+β)=sinαcosβ+cosαsinβ,
sin(α-β)=sinαcosβ-cosαsinβ,
将以上两式的左右两边分别相加,得
sin(α+β)+sin(α-β)=2sinαcosβ,
设α+β=θ,α-β=φ
那么
α=(θ+φ)/2,β=(θ-φ)/2
把α,β的值代入,即得
sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
正切的和差化积
tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明)
cotα±cotβ=sin(β±α)/(sinα·sinβ)
tanα+cotβ=cos(α-β)/(cosα·sinβ)
tanα-cotβ=-cos(α+β)/(cosα·sinβ)【注意右式前的负号】
证明:左边=tanα±tanβ=sinα/cosα±sinβ/cosβ
=(sinα·cosβ±cosα·sinβ)/(cosα·cosβ)
=sin(α±β)/(cosα·cosβ)=右边
∴等式成立
注意事项
在应用和差化积时,必须是一次同名三角函数方可实行。
若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次
口诀
正加正,正在前,余加余,余并肩
正减正,余在前,余减余,负正弦
反之亦然
生动的口诀:(和差化积)
帅+帅=帅哥
帅-帅=哥帅
哥+哥=哥哥
哥-哥=负嫂嫂
反之亦然
语文老师教的口诀:
口口之和仍口口 cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
赛赛之和赛口留 sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
口口之差负赛赛 cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
赛赛之差口赛收 sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
另一口诀:
正和正在先,sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
正差正后迁,sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
余和一色余,cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
余差翻了天,cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
另另一种口诀(前提是角度(α+β)/2在前,(α-β)/2在后的标准形式) :
正弦加正弦,正弦在前面,sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
正弦减正弦,余弦在前面,sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
余弦加余弦,余弦全部见,cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
余弦减余弦,余弦(负)不想见,cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]。
收起