什么叫做中枢神经抑制药什么叫做中
中枢神经
神经系统由中枢神经系统和周围神经系统构成
你所说的三个,我想应该指的是:脑、脊髓、周围神经吧。按照组成神经的形态来说,神经系统又主要是由神经元和神经胶质组成的。
1。脑
脑 (英:brain,拉:encephalon)中枢神经系统的主要部分,位于颅腔内。 低等脊椎动物的脑较简单。人和哺乳动物的脑特别发达,可分为大脑,小脑和脑干三部分。
(1)大脑:为神经系统最高级部分,由左,右两个大脑半球组成,两半球间有横行的神经纤维相联系。每个半球包括:
①大脑皮层(大脑皮质):是表面的一层灰质(神经细胞的细胞体集中部分)。 人的大脑表面有很多往下凹的沟(裂),沟(裂)之间有隆起的回,因而...全部
中枢神经
神经系统由中枢神经系统和周围神经系统构成
你所说的三个,我想应该指的是:脑、脊髓、周围神经吧。按照组成神经的形态来说,神经系统又主要是由神经元和神经胶质组成的。
1。脑
脑 (英:brain,拉:encephalon)中枢神经系统的主要部分,位于颅腔内。
低等脊椎动物的脑较简单。人和哺乳动物的脑特别发达,可分为大脑,小脑和脑干三部分。
(1)大脑:为神经系统最高级部分,由左,右两个大脑半球组成,两半球间有横行的神经纤维相联系。每个半球包括:
①大脑皮层(大脑皮质):是表面的一层灰质(神经细胞的细胞体集中部分)。
人的大脑表面有很多往下凹的沟(裂),沟(裂)之间有隆起的回,因而大大增加了大脑皮层的面积。人的大脑皮层最为发达,是思维的器官,主导机体内一切活动过程,并调节机体与周围环境的平衡,所以大脑皮层是高级神经活动的物质基础。
②髓质:又称"白质",位于大脑皮层内部,由神经纤维所组成。
③基底神经节:在半球底部的白质中,由神经细胞集中而成。
(2)小脑:在大脑的后下方,分为中间的蚓部和两侧膨大的小脑半球,表层的灰质即小脑皮层,被许多横行的沟分成许多小叶。
小脑的内部由白质和灰色的神经核所组成,白质称髓质,内含有与大脑和脊髓相联系的神经纤维。小脑主要的功能是协调骨胳肌的运动,维持和调节肌肉的紧张,保持身体的平衡。
(3)脑干:包括间脑,中脑,脑桥和延髓,分布着很多由神经细胞集中而成的神经核或*神经中枢,并有大量上,下行的神经纤维束通过,连接大脑,小脑和脊髓,在形态上和机能上把中枢神经各部分联系为一个整体。
脑各部内的腔隙称*脑室,充满脑脊液。在人体,脑通常分为大脑,小脑,间脑和脑干(包括中脑,脑桥和延髓)四部分。
2。脊髓
脊髓中枢神经系统的低级部位。位于椎管内,呈扁平柱形,上端平枕骨大孔和脑相续,下端呈圆锥形。
成人的圆椎末端在第一腰椎下缘,全长约45厘米,平均重30克,在颈部与腰部有两个膨大,与四肢功能有关。从横切面上看,中央为蝴蝶形灰质,周围由白质组成。灰质中央有中央管。灰质向后外突出的部分为后角,与脊神经的后根相连,内含中间神经元;向前方突出的部分为前角,内含运动神经元,其纤维构成脊神经前根;侧角内含植物性神经元。
白质由神经纤维组成,按位置可分前索,侧索和后索。分别把脑和脊髓及脊髓内各段联系起来。脊髓的功能有两个方面:一是传导功能,来自大部分器官的神经冲动,先经后根入脊髓,后经上行传导束到脑,脑发出的大部分冲动,通过下行传导束传到脊髓,再经前根传至全身大部分器官。
二是反射功能,脊髓灰质中有许多低级的神经中枢,可完成某些基本的反射活动,如排便,排尿等内脏反射和膝跳反射,跖反射等躯体反射。正常情况下,脊髓的反射活动都是在高级中枢控制下进行的。当脊髓突然横断,与高级中枢失去联系后,会产生暂时性的脊休克。
脊髓损伤可中断某一水平的生理功能。目前由于医学进步,许多脊髓损伤病人已有可能恢复其生理
3。中枢神经系统
中枢神经系统是神经组织最集中的部位。人的中枢神经系统包括脑和脊髓。脑有大脑,小脑,间脑,中脑,脑桥,延髓。
人体的反射活动表现在中枢神经系统。把不同空间和时间的传入冲动进行整合,神经元之间在机能上发生突触联系,使中枢神经系统的活动表现为兴奋的扩散,抑制和反馈。突触在结构和机能上的特性,决定了兴奋传递的单向性,从而使机体对内外界刺激的反应更加协调准确。
特别是大脑皮层的高度发展,成为神经系统最重要最高级的部分。
4。周围神经系统
周围神经系统是中枢神经系统以外的神经组织的总称。包括各种神经,神经丛和神经节。周围神经系统的一端同中枢神经系统的脑和脊髓相连,另一端通过各种末梢装置与身体其它器官和系统相联系。
周围神经包括12对脑神经,31对脊神经和植物性神经。植物性神经又可分为交感神经和副交感神经。在周围神经系统,神经元集中的部位称神经节。周围神经又可根据功能的不同,分为传入神经,传出神经和混合神经。
5。神经中枢
神经中枢又称反射中枢。中枢神经系统内对某一特定生理机能具有调节作用的细胞群或感受某一种刺激的细胞群。分别分布在中枢神经系统的各个部位,在反射活动中起重要作用。每种反射的中枢结构,称为该反射的中枢。
一些简单的反射,只需通过神经系统的低级部位就能完成。如膝跳反射中枢位于腰部脊髓。复杂反射的中枢,在中枢神经系统内分布较广,分布在几个不同的部位。但其中有一最基本部位,如呼吸中枢存在于延髓,脑桥以至大脑皮质,但延髓呼吸中枢是最基本的,其余各级中枢通过影响延髓呼吸中枢来调节呼吸运动,在同一中枢内,神经元之间的联系也是错综复杂的。
什么是神经元呢?它就是神经细胞。神经细胞的形态是多种多样的,在细胞表面有许多突起。所以,科学家们把神经细胞分成胞体和突起两部分来观察和描述。胞体部分和身体其他部位的细胞差不多,也包括细胞膜、细胞浆和细胞核等。
较特殊的是神经细胞的胞浆内含有带色素的斑块,称为尼氏小体或虎斑。突起部分有两种,一种突起短而分支多,称为树状突;另一种突起往往较长且只有一个,称为轴突。不论是树状还是轴突均有传导兴奋冲动的作用,就像电线传导电流一样。
轴突的结构比较复杂,外面包了一层叫髓鞘的东西,就像电线外面包了一层塑料皮似的。神经胶质也具有非常重要的作用,它对神经细胞具有支持、营养和形成髓鞘的功能。
轴突和轴突,树状突和树状突,轴突、树状突和细胞体之间都可以通过一个叫突触的结构发生联系。
突触之间有两层膜,膜间有个极小的空隙,只有在电子显微镜下才能看到。兴奋冲动从一条神经的轴突传送过来时,在突触前面的那层膜里可产生一些化学物质,如乙酷胆碱、去甲肾上腺素等,这些化学物质再释放到两层膜的空隙内,然后作用于后面的那层膜,这样便可使神经冲动沿着后面那条神经传下去。
这种神经传导速度是非常快的,每秒钟可以传送1~100米远。一旦人体受到外界的刺激时,神经冲动就会迅速地从一个神经细胞,通过突触这一途径,一传十、十传百……迅速传到大脑,由大脑皮层进行分析综合,再通过另外一套神经通路,把命令发送到全身,以对外界的刺激做出及时而恰当的反应。
神经衰弱时,大脑内抑制过程减弱,神经细胞的兴奋性相对增高,这样对外界的刺激可产生强而迅速的反应,从而使神经细胞的能量大量消耗。因此,神经衰弱患者常表现为既容易兴奋,又易于疲劳。另一方面,大脑皮层功能弱化,其调节和控制皮层下植物神经系统功能也减弱,从而出现植物神经功能亢进的一些症状。
中枢抑制
在任何反射活动中,中枢内既有兴奋活动又有抑制活动。某一反射进行时,某些其他反射即受抑制,例如吞咽时呼吸停止、屈肌反射进行时伸肌即受抑制(图10-15)。反射活动有一定的次序、一定强度,并有一定的适应意义,是反射的协调功能的表现。
反射活动所以能协调,就是因为中枢内既有兴奋活动又有抑制活动;如果中枢抑制受到破坏,则反射活动就不可能协调。例如,用士的宁破坏脊髓抑制活动后,任何一个微弱刺激会导致四肢出现强烈的痉挛性收缩,失去了反射活动的协调性。
根据中枢抑制产生机制的不同,抑制可分为突触后抑制和突触前抑制两类。
图见:
图10-15 拮抗性反射 F为半腱肌的反应(收缩),
E为股中间肌的反应(驰缓),TP为刺激传入神经的记号,1为时标
(一)突触后抑制
在哺乳类动物中,所有的突触后抑制都是由抑制性中间神经元活动引起的。
由这一抑制性神经元发出的轴突末梢释放的递质,能使所有与其发生突触联系的其他神经元都发生抑制,都暗生抑制性突触后电位。按此观点,一个兴奋性神经元通过突触联系能引起其他神经元产生兴奋,但不能直接引起其他神经元产生突触后抑制;它必须首先兴奋一个抑制性神经元,转而抑制其他神经元。
1.抑制性突触后电位脊髓前角运动神经元有的支配伸肌,有的支配屈肌。来自伸肌肌梭的传入神经冲动,能兴奋伸肌运动神经元,也能同时通过抑制性中间神经元转而抑制屈肌运动神经元。如用微电极插入屈肌运动神经元细胞体内,并刺激伸肌肌梭的传入神经使屈肌运动神经元发生抑制,可见到其细胞体的突触后膜出现超极化现象。
这时膜电位的数值向-80mV水平靠近。这种超极化膜电位变化称为抑制性突触后电位(inhibitory postsynaptic potential,IPSP)。抑制性突触后电位的变化与兴奋性突触后电位变化在时程上极相似,但前者为超极化,后者为去极化,变化方向恰相反(图10-16)。
可以设想突触后膜在超极化状态下。轴突始段部位将出现内向电流,造成该处不易爆发动作电位,也就表现为抑制。由于这种抑制是突触后膜出现抑制性突触后电位所造成的,因此称为突触后抑制(postsynaptic inhibition)。
抑制性突触后电位是突触后膜对CI-通透性增加而形成的。
图见:
图10-16 抑制性突触后电位
每组曲线的下线为某一屈肌运动神经元细胞内电位记录,上线为刺激拮抗伸肌传入神经时的背根电位记录。
当刺激强度逐步加大时,背根电位逐步增大,超极化电位变化也逐步增大
2.突触后抑制的分类根据抑制性神经元的功能和联系方式的不同,突触后抑制可分为传入侧支性抑制(afferent collateral inhibition)和回返性抑制(recurrent inhibition)(图10-17)。
图见:
图10-17 两类突触后抑制
甲:回返性抑制乙:传入侧支性抑制黑色神经元代表抑制性神经元
(1)传入侧支性抑制:是指在一个感觉传入纤维进入脊髓后,一方面直接兴奋某一中枢的神经元,另一方面发出其侧支兴奋另一抑制性中间神经元;然后通过抑制性神经元的活动转而抑制另一中枢的神经元。
例如,伸肌的肌梭传入纤维进入中枢后,直接兴奋伸肌的α运动神经元,同时发出侧支兴奋一个抑制性神经元,转而抑制屈肌的α运动神经元,导致伸肌收缩而屈肌舒张;这种抑制曾被称为交互抑制。这种形式的抑制不是脊髓独有的,脑内也有。
这种抑制能使不同中枢之间的活动协调起来。
(2)回返性抑制:是指某一中枢的神经元兴奋时,其传出冲动沿轴突外传,同时又经轴突侧支去兴奋另一抑制性中间神经元;该抑制性神经元兴奋后,其活动经轴突反过来作用于同一中枢的神经元,抑制原先发动兴奋的神经元及同一中枢的其他神经元。
脊髓前角运动神经元与闰绍细胞之间的联系,
就是这种抑制的典型。前角运动神经元发出轴突支配外周的骨骼肌,同时也在脊髓内发出侧支兴奋闰绍细胞;闰绍细胞是抑制性神经元,其活动经轴突回返作用于脊髓前角运动神经元,抑制原先发动兴奋的神经元和其他神经元。
这种形式的抑制在海马和丘脑内也明显存在。这种抑制是一种负反馈控制形式,它能使神经元的活动及时终止,也促使同一中枢内许多神经元之间的活动能步调一致。丘脑与海马内许多神经元的活动能够同步化,就是由于存在回返性抑制环节的缘故。
闰绍细胞轴突末梢释放的递质是甘氨酸,其作用能被士的宁和破伤风毒素所破坏;在闰绍细胞功能存在后,将出现强烈的痉挛。
(二)突触前抑制
前文已述及,轴突可与另一神经元的轴突构成突触,这种突触可能是突触前抑制的结构基础。
图10-18显示这种突触关系,A纤维末梢与运动神经元构成轴突-胞体型突触,能兴奋该运动神经元;b 纤维传入经过多突触接替后,末梢与A纤维末梢构成轴突-轴突型突触,不能直接影响该运动神经元活动。
当A纤维兴奋传入冲动抵达末梢时,可引致运动神经元出现兴奋性突触后电位(图10-18,甲,1);当仅有B纤维兴奋冲动传入时,见不到该运动神经元有反应。如果先使B纤维兴奋,一定时间间隔后再使A纤维兴奋,则A纤维兴奋所引起的兴奋性突触后电位明显减小(图10-18,甲,2,2),说明B纤维的活动能抑制A纤维的兴奋作用。
已知,抵达末梢部位的动作电位是触发神经递质释放的因素,如动作电位大则递质释放量大,运动电位小则递质释放量小;而动作电位的大小又受到轴突末梢跨膜静息电位的影响,跨膜静息电位大则动作电位大,跨膜静息电位小则动作电位也小。
由此认为,突触前抑制产生的机制是:B纤维传入经多突触接替后,兴奋抵达末梢交释放递质→递质作用于A纤维末梢使其去极化,从而使末梢跨膜静息电位变小→A纤维兴奋时其末梢的动作电位变小,使释放的递质减少→运动神经元的兴奋性突触后电位减小。
因此,B纤维的抑制作用是通过使A纤维释放的兴奋性递质减小而实现的。由于这种抑制是改变了突触前膜的活动而实现的,因此称为突触前抑制。
突触前抑制在中枢神经系统内广泛存在,尤其多见于感觉传入途径,对调节感觉传入活动有重要作用。
突触前掏可发生在各类感受器传入活动之间,也可发生面类感受器的不同感受野活动之间;即一个感觉传入纤维的兴奋冲动进入中枢后,它本身沿特定的传导路径向高位中枢,同时通过多个神经元的接替,转而对其旁的感觉传入纤维的活动发生突触前抑制限制其他的感觉传入活动。
由于突触前抑制产生的潜伏期较长,因此认为传入神经必须通过两个以上中间神经元的多突触接替,才能与其他感觉传入神经末梢形成轴突-轴突型突触联系。突触前抑制一般约在刺激传入神经后20ms左右发展到高峰,而后其抑制作用逐渐减弱,整个抑制过程可持续100-200ms。
图见:
甲:每组曲线的上线为传入冲动电位记录,下线为某肌运动神经元细胞内电位记录
乙:实验方法示意图。微电极插入基本肌运动神经元细胞体内
A:来自该肌的传入神经纤维 B:来自另一肌肉的传入神经纤维
在局部神经元回路中提到了交互性突触联系,这种联系可以由一个兴奋性突触和一个抑制性突触组合而成。
在这种联系中,一个树突活动时,首先通过兴奋性突触激活另一个树突;而后一个权威突活动加强时,却通过抑制性突触来抑制前一个树突的活动,使原行发动兴奋的树突很快受到反馈抑制。这种抑制,发生在局部神经元回路中,起到了局部的整合作用;而且这种抑制只有树突的一部分参与活动,不需要整个神经元参与活动。
由树突-树突型突触联系产生的抑制,称为树突-树突型抑制(dendrodendritic inhibirion),它在视网膜、嗅球、丘脑内都存在,也是中枢抑制的一种形式。
。收起