已知向量a=[cos(3/2)x
已知向量a=(cos(3/2)x,sin(3/2)x),b=(cos(x/2),-sin(x/2)),且x∈[0,π/2],求:
1,向量积a•b及|a+b|
2,若f(x)=a•b-2m|a+b|的最小值为-3/2,求实数m的值
(1) a•b = cos(3/2)xcos(x/2) - sin(3/2)xsin(x/2) = cos2x
|a+b| = √(a²+b²+2a•b) = √(2+2cos2x) = 2cosx
(2) f(x)=cos2x-4mcosx=2cos²x-4mcosx-1=2(c...全部
已知向量a=(cos(3/2)x,sin(3/2)x),b=(cos(x/2),-sin(x/2)),且x∈[0,π/2],求:
1,向量积a•b及|a+b|
2,若f(x)=a•b-2m|a+b|的最小值为-3/2,求实数m的值
(1) a•b = cos(3/2)xcos(x/2) - sin(3/2)xsin(x/2) = cos2x
|a+b| = √(a²+b²+2a•b) = √(2+2cos2x) = 2cosx
(2) f(x)=cos2x-4mcosx=2cos²x-4mcosx-1=2(cosx-m)²-(2m²+1)
∵0≤cosx≤1
∴m≥1时,cosx=1时取得最小值1-4m=-3/2--->m=5/8,舍去;
0≤m≤1时,cosx=m时取得最小值-2m²-1=-3/2--->m=1/2
m≤0时,cosx=0时取得最小值-1,舍去;
综上,m=1/2。
收起