知道基因在染色体分布位置,如何计算遗传
遗传距离指个体、群体或种之间用DNA序列或等位基因频率来估计的遗传差异大小。衡量遗传距离的指标包括用于数量性状分析的欧式距离(D),可用于质量性状和数量性状的Gower距离(DG)和Roger距离(RD),用于二元数据的改良Roger距离(GDMR)、Nei&Li距离(GDNL)、Jaccard距离(GDJ)和简单匹配距离(GDSM)等:D=[(x1-y1)2+(x2-y2)2+…(xp-yp)2]1/2,这里x1,x2,…,xp和y1,y2,…,yp分别为两个个体(或基因型、群体)i和j形态学性状p的值。 两个自交系之间的遗传距离Dsmith=∑[(xi(p)-yj(p))2/...全部
遗传距离指个体、群体或种之间用DNA序列或等位基因频率来估计的遗传差异大小。衡量遗传距离的指标包括用于数量性状分析的欧式距离(D),可用于质量性状和数量性状的Gower距离(DG)和Roger距离(RD),用于二元数据的改良Roger距离(GDMR)、Nei&Li距离(GDNL)、Jaccard距离(GDJ)和简单匹配距离(GDSM)等:D=[(x1-y1)2+(x2-y2)2+…(xp-yp)2]1/2,这里x1,x2,…,xp和y1,y2,…,yp分别为两个个体(或基因型、群体)i和j形态学性状p的值。
两个自交系之间的遗传距离Dsmith=∑[(xi(p)-yj(p))2/varx(p)]1/2,这里xi(p)和yj(p)分别为自交系i和j第p个性状的值,varx(p)为第p个数量性状在所有自交系中的方差。
DG=1/p∑wkdijk,这里p为性状数目,dijk为第k个性状对两个个体i和j间总距离的贡献,dijk=|dik-xjk|,dik和djk分别为i和j的第k个性状的值,wk=1/Rk,Rk为第k个性状的范围(range)。
当用分子标记作遗传多样性分析时,可用下式:d(i,j)=constant(∑|Xai-Xaj|r)1/r,这里Xai为等位基因a在个体i中的频率,n为每个位点等位基因数目,r为常数。当r=2时,则该公式变为Roger距离,即RD=1/2[∑(Xai-Xaj)2]1/2。
当分子标记数据用二元数据表示时,可用下列距离来表示:GDNL=1-[2N11/(2N11+N10+N01)]GDJ=1-[N11/(N11+N10+N01)]GDSM=1-[(N11+N00)/(N11+N10+N01+N00)]GDMR=[(N10+N01)/2N]0。
5这里N11为两个个体均出现的等位基因的数目,N00为两个个体均未出现的等位基因数目,N10为只在个体i中出现的等位基因数目,N01为只在个体j中出现的等位基因数目,N为总的等位基因数目。谱带在分析时可看成等位基因。
在实际操作过程中,选择合适的遗传距离指标相当重要。一般来说,GDNL和GDJ在处理显性标记和共显性标记时是不同的,用这两个指标分析自交系时排序结果相同,但分析杂交种中的杂合位点和分析杂合基因型出现频率很高的群体时其遗传距离就会产生差异。
根据以前的研究结果,建议在分析共显性标记(如RFLP和SSR)时用GDNL,而在分析显性标记(如AFLP和RAPD)时用GDSM或GDJ。GDSM和GDMR,前者可用于巢式聚类分析和分子方差分析(AMOVA),但后者由于有其重要的遗传学和统计学意义而更受青睐。
在衡量群体(居群)的遗传分化时,主要有三种统计学方法:一是χ2测验,适用于等位基因多样性较低时的情形,二是F统计(Wright,1951),三是GST统计(Nei,1973)。在研究中涉及到的材料很多时,还可以用到一些多变量分析技术,如聚类分析和主成分分析等等。
收起