一道高一数学题在三角形ABC中,
b^2=ac
cosB=(a^2+c^2-b^2)/(2ac)
=(a^2+c^2-ac)/(2ac)
=(a^2+c^2)/(2ac)-1/2=3/4
(a^2+c^2)/(2ac)=5/4
2a^2-5ac+2c^2=0
(2a-c)(a-2c)=0
c/a=2或1/2
则q^2=c/a,且q>0
所以q=,我就不写了
a/sinA=b/sinB=c/sinC
所以sinA=a/b*sinB,sinC=c/b*sinB
cotA+cotC=cosA/sinA+cosC/sinC
=(cosA*sinC+sinA*cosC)/sinA*sinC
=sin(A+C)/[(a/b*sinB)...全部
b^2=ac
cosB=(a^2+c^2-b^2)/(2ac)
=(a^2+c^2-ac)/(2ac)
=(a^2+c^2)/(2ac)-1/2=3/4
(a^2+c^2)/(2ac)=5/4
2a^2-5ac+2c^2=0
(2a-c)(a-2c)=0
c/a=2或1/2
则q^2=c/a,且q>0
所以q=,我就不写了
a/sinA=b/sinB=c/sinC
所以sinA=a/b*sinB,sinC=c/b*sinB
cotA+cotC=cosA/sinA+cosC/sinC
=(cosA*sinC+sinA*cosC)/sinA*sinC
=sin(A+C)/[(a/b*sinB)*(c/b*sinB)]
=sinB/[(a/b*sinB)*(c/b*sinB)]
=(b^2/ac)*1/sinB
=1/sinB
cosB=3/4,用(sinB)^2+(cosB)^2=1
1/sinB=4/根号7。
收起