谢谢1.设函数f(x)=2cos
1。设函数f(x)=2cos^x+2√3sinxcosx-1(x∈R)的最大值为M,最小正周期为T(1)求M和T的值(2)若有10个互不相等的正数Xi满足f(Xi)=M, 且XiM=2, T=2π/2=π
f(Xi)=2sin(2Xi+π/6)=2--->2Xi+π/6=2kπ+π/2--->Xi=kπ+π/6,k∈Z
0<Xi=kπ+π/6<10π--->0≤k≤9,正好10个值
--->X1+X2+。 。。+X10 = (π/6)+(π+π/6)+(2π+π/6)+。。。+(9π+π/6)
= (1+2+3+。。。+9)π + 10(π/6) = 140π/3
2。...全部
1。设函数f(x)=2cos^x+2√3sinxcosx-1(x∈R)的最大值为M,最小正周期为T(1)求M和T的值(2)若有10个互不相等的正数Xi满足f(Xi)=M, 且XiM=2, T=2π/2=π
f(Xi)=2sin(2Xi+π/6)=2--->2Xi+π/6=2kπ+π/2--->Xi=kπ+π/6,k∈Z
0<Xi=kπ+π/6<10π--->0≤k≤9,正好10个值
--->X1+X2+。
。。+X10 = (π/6)+(π+π/6)+(2π+π/6)+。。。+(9π+π/6)
= (1+2+3+。。。+9)π + 10(π/6) = 140π/3
2。
已知△ABC的面积S满足√3≤S≤3,且向量AB*BC=6,AB与BC的夹角为θ(1)求θ的取值范围(2)求函数f(θ)=sin^θ+2sinθcosθ+3cos^θ的最小值
AB*BC=6=|AB||BC|cosθ--->|AB||BC|=6/cosθ
S=(1/2)|AB||BC|sinθ=3sinθ/cosθ=3tanθ∈[√3,3]
--->tanθ∈[√3/3,1]--->θ∈[π/6,π/4]
--->2θ∈[π/3,π/2]--->2θ+π/4∈[7π/12,3π/4]
f(θ)=sin^θ+2sinθcosθ+3cos^θ=(1+2cos^θ)+sin2θ
=1+1+cos2θ+sin2θ
=2+√2sin(2θ+π/4)∈[2+√2sin(3π/4),2+√2sin(7π/12)]
--->minf(θ)=2+√2sin(3π/4)=2+1=3。
收起