分式约分求值
解:(2x^2+3xy-2y^2)/(x^2+3xy+2y^2) ```=[2+y/x-2(y/x)^2]/[1+3y/x+2(y/x)^2] (上下同除以x^2) ```=[2+2+2(2)^2]/[1+3(2)+2(2)^2] ```=4/5
解:(2x^2+3xy-2y^2)/(x^2+3xy+2y^2) ,,,,=[(2x-y)(a+2y)]/[(x+2y)(x+y)] ,,,,=(2x-y)/(x+y) 分子、分母同除y ,,,,=(2x/y-1)/(x/y+1) ,,,,=(2*1/2-1)/(1/2+1) ,,,,=0/(3/2) ,,,,=0.
解: 分子分母同时除于y^2 原式=[2(x/y)^2+3x/y-2]/[(x/y)^2+3x/y+2] =(2*0.5*0.5+3*0.5-2)/(0.5*0.5+3*0.5+2) =0
令t=x/y 2x^2+3xy-2y^2/x^2+3xy+2y^2=[2*t^2+3*t-2]/[t^2+3*t+2] 将t=1/2代入计算得:0
1.已知x/y=1/2,求2x^2+3xy-2y^2/x^2+3xy+2y^2的值 x/y=1/2 y=2x 2x^2+3xy-2y^2/x^2+3xy+2y^2 =(2x-y)(x+2y)/(x+y)(x+2y) =(2x-y)/(x+y) =(2x-2x)/(x+2x) =0
2x^2+3xy-2y^2/x^2+3xy+2y^2=(x+2y)(2x-y)/(x+2y)(x+y)=(2x-y)/(x+y) 记a=x/y=1/2 原式=2a-1/a+1=0