奇函数是指对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)= - f(x),那么函数f(x)就叫做奇函数(odd function)。
原函数是指对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。
综上所述:
奇函数的原函数一定是偶函数。
偶函数的原函数只有一个是奇函数(变上限函数)
偶函数+常数=偶函数,相当于沿着y轴平移,仍然关于y轴对称,故仍是偶函数。但奇函数平移后显然不再关于原点对称了。