e的2x次方的导数:2e^(2x)。
e^(2x)是一个复合函数,由u=2x和y=e^u复合而成。
计算步骤如下:
1、设u=2x,求出u关于x的导数u'=2;
2、对e的u次方对u进行求导,结果为e的u次方,带入u的值,为e^(2x);
3、用e的u次方的导数乘u关于x的导数即为所求结果,结果为2e^(2x)。
导数(Derivative),也叫导函数值,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。