恢复古气候的方法
古气候和古环境气候变化早为人们关注,洪涝、旱灾早与人类的生产、生活甚至生死存亡休戚相关。自有文字以来,各地旱涝灾情的记载随处可见,可见气候与人类关系之密切。近年来,人们又议论着一个新的话题:世界气候真的会越来越暖吗?世界气候变暖真能把南极大陆的冰盖融化吗?海平面真的会因此而出现灾难性的上升吗?……过去,环境变化并未被人们重视。 然而,近来,人们在关注气候变化的同时,也关心着环境状态的演变。诸如,城市空气是否变得污浊,饮用水和食物是否被污染,南极臭氧洞是否能向北移动威胁人类的安全,……要评价现代气候和环境的变化很自然地要考证过去气候和环境的历史资料。 然而,有观测记录的历史气候资料,最长...全部
古气候和古环境气候变化早为人们关注,洪涝、旱灾早与人类的生产、生活甚至生死存亡休戚相关。自有文字以来,各地旱涝灾情的记载随处可见,可见气候与人类关系之密切。近年来,人们又议论着一个新的话题:世界气候真的会越来越暖吗?世界气候变暖真能把南极大陆的冰盖融化吗?海平面真的会因此而出现灾难性的上升吗?……过去,环境变化并未被人们重视。
然而,近来,人们在关注气候变化的同时,也关心着环境状态的演变。诸如,城市空气是否变得污浊,饮用水和食物是否被污染,南极臭氧洞是否能向北移动威胁人类的安全,……要评价现代气候和环境的变化很自然地要考证过去气候和环境的历史资料。
然而,有观测记录的历史气候资料,最长的只有数百年,而历史环境资料就更短了,真正有观测记录的是最近几十年的事。科学家们知道,气候和环境变化的准周期长短不一,有几年,几十年,几百年甚至几千年。因此,恢复古气候和古环境变化资料,是研究未来气候和环境演变的基础。
我国气候学奠基人竺可桢先生首先采用古代文字记载,物象等手段恢复了我国5000年来的气候演变,成为世界上研究古气候变化的一个里程碑。然而,恢复古环境资料,恢复比5000年更古老的气候资料仍然没有得到解决。
冰芯 正当气候学家和环境学家冥思苦想的时候,冰川学家帮了大忙。冰川学家在研究南极大陆冰盖的年龄及其形成的历史过程时,采用了钻取冰岩芯样品的方法来测定冰川的年龄和形成过程。他们发现,从冰川的冰岩芯样品中,不仅能测定冰川的年龄及其形成过程,还可以得到相应历史年代的气温和降水资料,以及相应年代的二氧化碳等大气化学成分含量,开辟了恢复古气候和古环境的新的道路。
由于南极大陆的冰盖厚度深达几百至几千米,而且气候极其寒冷,成冰过程中无融化现象,因而,从这儿钻取的冰岩芯样品能较准确地代表历史气候和环境的真实状况,这是南极得天独厚的条件。记载表明,从南极大陆冰盖获取的冰岩芯样品,至今已超过2000米,获得了15万年以前的古气候和古环境资料。
怎样从冰岩芯中获取古气候和古环境资料呢?首先,谈谈怎样获取冰龄的资料。南极大陆冰盖是由积雪本身的重量长年挤压而成,称作重力冰。在南极地区,由于气温低,积雪不融化,每年的积雪形成一层层沉积物,年覆一年,从底部至上逐渐形成一层层的冰层,越向上年代越新。
冬季气温低,雪粒细而紧密;夏季气温高,雪粒粗而疏松;因而,冬夏季积雪形成的冰层之间具有显著的层理结构差异,宛如树干的年轮一样,用这种直观的方法只可辨认约90米厚的冰层,代表近500年的冰沉积。
要测定100米以上深度的冰层年龄,必须采用氧同位素方法。所谓氧的同位素,即同属氧元素(O)但具有不同质量数的氧原子,如16O,17O和18O就是氧的三种同位素。氧元素符号左上角的数就是它的质量数,显然,18O的质量大于16O。
18O不易蒸发,16O易蒸发。因而,在夏天高温时,水中所含16O减少,故18O/16O的值增加;冬天低温时,18O/16O的值减小。据此,测定冰岩芯中各冰层的18O/16O值的变化,即可确定冰层的年龄:其比值的每一起伏为一年。
有了冰层的冰龄资料,再进一步确定各冰龄的气温和降水,便有了历史气候的最基本资料了。原则上,可以根据各年冰层厚度来确定当年降水量。其条件是,必须选取风速很小地区的冰岩芯资料才能排除风吹雪的影响。
如,在南极内陆区域,由于风速小,冰芯资料最理想。用冰岩芯提取古代气温资料的方法,可通过如下途径来进行。首先,实际测定一组现代南极冰盖上某点的气温以及相应时间降雪中18O/16O的值,得到南极地区气温与18O/16O值关系的曲线;之后,把过去某一年冰层中18O/16O值与上述曲线比较,即可知道当年的气温。
原苏联科学家利用这种方法,测定了南极东方站0~2038米的冰岩芯样,从中提取了15万年以来全球气温的变化资料。获取古环境资料的方法可根据不同的大气化学成分而定。二氧化碳与气候的密切关系,早为世界关注。
因此,获取二氧化碳历史资料的问题首先得以提到日程。在南极地区降雪堆积并挤压成冰层的过程中,总会保留下冰间空穴,,保存着当年的空气。在分析冰岩芯样品时,分析冰芯中滞留氧泡的大气化学成分,即可测得其二氧化碳的含量。
有了上述测定冰龄的前提,二氧化碳的历史演变资料即可得到。依照同样方法,还可分析得到诸如甲烷、氮等气体的历史资料。从冰岩芯样品中还可分析其它各种元素成分的历史资料,如:硫,砷,氟,钾,……这些都是研究环境变化的重要依据。
同钻取冰岩芯样品分析古气候和古环境资料的思路一样,从南极地区的湖底沉积中钻取岩芯,也可得到古气候和古环境的历史资料。为什么从湖底沉积物的柱状剖面中能够提取古气候和古环境的信息呢?大家知道,在气候严寒的极地条件下,温度是植物生长的主要限制因素。
温度高,有利于植物生长,温度低,植物生长受到限制。可见,有机质含量高和植物残体丰富应指示相对高温条件;反之,有机质含量低和植物残体贫乏应指示相对低温状况。据此,可以用湖底沉积物样品各沉积层中的植物残体含量变化来定性地描述历史气温的变化趋势。
另外,由于南极地区气温低,植物有机体分解缓慢,因而,湖底沉积物中能保存较多没有完全分解的或比较完整的植物残体,为我们通过湖底沉积物来反演历史气候变化资料提供了可能条件。南极地区湖底沉积物样品的年龄是采用14C方法测定的。
要知道14C方法测定年龄的道理,首先我们要了解什么叫14C。14C即原子质量数为14的碳原子。其次,我们要知道14C的性质。在自然界中,所有含碳物质均在与大气不断地交换,而产生新的14C补充于该含碳物质中;同时,按照放射性衰减的规律,14C又在不断地减少,如此补充和衰减的综合结果,使所有含碳物质中的14C含量保持动态平衡。
然而,一旦含碳物质停止与大气交换(如:生物死亡,碳酸盐沉淀理藏于地下等),14C得不到补充,原来含有的14C将按其衰减规律减少,即每隔5730年左右,14C含量将减少一半。了解了14C的性质,14C测年法也就不难明白了。
从埋藏在地下的生物残体或含碳样品中,测定含碳样品中14C的原子数,再与现代自然界里相同含碳物质中14C的原子数相比较,就能知道样品的14C原子数减少了多少,根据其半衰减周期为5730±40年的规律,该样品的历史年代就可找到了。
南极地区为人类蕴藏了如此丰富的古气候和古环境档案资料,应该能为研究现代和未来气候的演变提供有效的科学依据。例如,从南极内陆冰芯中获得的15万年来气温演变资料不难看出,距今2万年以来,全球气温开始上升,近1万年以来一直处于高温期间(间冰期),这与近数十年来实测全球平均气温逐渐增高的结果相符。
这是"人类活动影响全球变暖"的有力证据。于是,有人预测,未来气候将逐渐变暖,论据是工业发展和人类活动将不断排放出更多的二氧化碳和甲烷等温室气体,加热大气。然而,根据冰芯得到的气温历史资料也表明,在距今约12万年到14万年之间,地球上也有一个高温期,且其平均气温值要比近1万年来的平均气温值还要高。
如果说,近一万年来,尤其是近百年来地球上气温升高是由于人类及工业活动的影响,那么,距今十多万年前的高温期是否也是受人类和工业活动的影响呢?从已知的人类发展史来看,显然,目前还没有充分的根据证明是人类活动的影响。
人类在讨论数十年来全球平均气温升高的原因时,往往归咎于二氧化碳含量增加产生的“温室效应”。若仅就这数十年的情况看,的确,两者之间似乎存在着正相关。然而,若仔细对比二氧化碳含量与气温变化之间关系,情况就不完全相同了。
例如,距今11万年~10万年间,气温一直在升高,但同期的二氧化碳含量却在下降。这说明,气温和二氧化碳浓度变化之间并不一定都有明显的成正比变化的关系。可见,由南极地区冰岩芯反演得到的古气候和古环境资料,一方面为未来气候和环境变化可提供预测依据,同时,也可为解释当今气候环境变化的原因提供有效的科学思路。
收起