搜索
首页 教育/科学 理工学科 生物学

什么是细胞?

全部回答

2008-09-23

0 0

细胞是由膜包围着含有细胞核(或拟核)的原生质所组成, 是生物体的结构和功能的基本单位, 也是生命活动的基本单位。细胞能够通过分裂而增殖,是生物体个体发育和系统发育的基础。细胞或是独立的作为生命单位, 或是多个细胞组成细胞群体或组织、或器官和机体;细胞还能够进行分裂和繁殖;细胞是遗传的基本单位,并具有遗传的全能性。

2008-09-23

584 0

这种问题不用问,直接打开百度输入;什么是细胞,就可以了,何必等人回答还浪费时间,而且有详细,楼上的大概也是百度上复制过来的吧

2008-09-23

596 0

     除病毒外的所有生物,都由细胞构成。自然界中既有单细胞生物,也有多细胞生物。细胞是生物体基本的结构和功能单位。细胞是生物界中,不可缺的一部分。   细胞是生命的基本单位,细胞的特殊性决定了个体的特殊性,因此,对细胞的深入研究是揭开生命奥秘、改造生命和征服疾病的关键。
    细胞生物学已经成为当代生物科学中发展最快的一门尖端学科,是生物、农学、医学、畜牧、水产和许多生物相关专业的一门必修课程。50年代以来诺贝尔生理与医学奖大都授予了从事细胞生物学研究的科学家。
     定义概要   细胞:是生命活动的基本单位,一切有机体都由细胞构成,细胞是构成有机体的基本单位。     ★细胞具有独立的、有序的自控代谢体系,是代谢与功能的基本单位   ★细胞是有机体生长与发育的基础   ★细胞是遗传的基本结构单位,细胞具有遗传的全能性   ★没有细胞就没有完整的生命 细胞的基本结构   在光学显微镜下观察植物的细胞,可以看到它的结构分为下列四个部分   1。
    细胞壁   位于植物细胞的最外层,是一层透明的薄壁。它主要是由纤维素组成的,孔隙较大,物质分子可以自由透过。细胞壁对细胞起着支持和保护的作用。   2。细胞膜   细胞壁的内侧紧贴着一层极薄的膜,叫做细胞膜。
  这层由蛋白质分子和脂类分子组成的薄膜,水和氧气等小分子物质能够自由通过,而某些离子和大分子物质则不能自由通过,因此,它除了起着保护细胞内部的作用以外,还具有控制物质进出细胞的作用:既不让有用物质任意地渗出细胞,也不让有害物质轻易地进入细胞。
       细胞膜在光学显微镜下不易分辨。用电子显微镜观察,可以知道细胞膜主要由蛋白质分子和脂类分子构成。在细胞膜的中间,是磷脂双分子层,这是细胞膜的基本骨架。在磷脂双分子层的外侧和内侧,有许多球形的蛋白质分子,它们以不同深度镶嵌在磷脂分子层中,或者覆盖在磷脂分子层的表面。
    这些磷脂分子和蛋白质分子大都是可以流动的,可以说,细胞膜具有一定的流动性。细胞膜的这种结构特点,对于它完成各种生理功能是非常重要的。   3。细胞质   细胞膜包着的黏稠透明的物质,叫做细胞质。
  在细胞质中还可看到一些带折光性的颗粒,这些颗粒多数具有一定的结构和功能,类似生物体的各种器官,因此叫做细胞器。  例如,在绿色植物的叶肉细胞中,能看到许多绿色的颗粒,这就是一种细胞器,叫做叶绿体。
  绿色植物的光合作用就是在叶绿体中进行的。在细胞质中,往往还能看到一个或几个液泡,其中充满着液体,叫做细胞液。在成熟的植物细胞中,液泡合并为一个中央液泡,其体积占去整个细胞的大半。   细胞质不是凝固静止的,而是缓缓地运动着的。
    在只具有一个中央液泡的细胞内,细胞质往往围绕液泡循环流动,这样便促进了细胞内物质的转运,也加强了细胞器之间的相互联系。细胞质运动是一种消耗能量的生命现象。细胞的生命活动越旺盛,细胞质流动越快,反之,则越慢。
  细胞死亡后,其细胞质的流动也就停止了。   除叶绿体外,植物细胞中还有一些细胞器,它们具有不同的结构,执行着不同的功能,共同完成细胞的生命活动。  这些细胞器的结构需用电子显微镜观察。
  在电镜下观察到的细胞结构称为亚显微结构。   ①线粒体   呈线状、粒状,故名。在线粒体上,有很多种与呼吸作用有关的颗粒,即多种呼吸酶。它是细胞进行呼吸作用的场所,通过呼吸作用,将有机物氧化分解,并释放能量,供细胞的生命活动所需,所以有人称线粒体为细胞的“发电站”或“动力工厂”。
       ②叶绿体   叶绿体是绿色植物细胞中重要的细胞器,其主要功能是进行光合作用。叶绿体由双层膜、类囊体和基质三部分构成。类囊体是一种扁平的小囊状结构,在类囊体薄膜上,有进行光合作用必需的色素和酶。
  许多类囊体叠合而成基粒。基粒之间充满着基质,其中含有与光合作用有关的酶。  基质中还含有DNA。   ③内质网   内质网是细胞质中由膜构成的网状管道系统广泛的分布在细胞质基质内。
  它与细胞膜相通连,对细胞内蛋白质等物质的合成和运输起着重要作用。   内质网有两种:一种是表面光滑的;另一种是上面附着许多小颗粒状的。内质网增大了细胞内的膜面积,膜上附着这许多酶,为细胞内各种化学反应的正常进行提供了有利条件。
       ④高尔基体   高尔基体普遍存在于植物细胞和动物细胞中。一般认为,细胞中的高尔基体与细胞分泌物的形成有关,高尔基体本身没有合成蛋白质的功能,但可以对蛋白质进行加工和转运。
  植物细胞分裂时,高尔基体与细胞壁的形成有关。   ⑤核糖体   核糖体是椭球形的粒状小体,有些附着在内质网膜的外表面,有些游离在细胞质基质中,是合成蛋白质的重要基地。     ⑥中心体   中心体存在于动物细胞和某些低等植物细胞中,因为它的位置靠近细胞核,所以叫中心体。
  每个中心体由两个互相垂直排列的中心粒及其周围的物质组成。 动物细胞的中心体与丝分裂有密切关系。   ⑦液泡   液泡是植物细胞中的泡状结构。成熟的植物细胞中的液泡很大,可占整个细胞体积的90%。
    液泡的表面有液泡膜。液泡内有细胞液,其中含有糖类、无机盐、色素和蛋白质等物质,可以达到很高的浓度。因此,它对细胞内的环境起着调节作用,可以使细胞保持一定的渗透压,保持膨胀的状态。
     ⑧溶酶体   溶酶体是细胞内具有单层膜囊状结构的细胞器。其内含有很多种水解酶类,能够分解很多物质。     4。细胞核   细胞质里含有一个近似球形的细胞核,是由更加黏稠的物质构成的。
  细胞核通常位于细胞的中央,成熟的植物细胞的细胞核,往往被中央液泡推挤到细胞的边缘。细胞核中有一种物质,易被洋红、苏木精等碱性染料染成深色,叫做染色质。生物体用于传种接代的物质即遗传物质,就在染色质上。
    当细胞进行有丝分裂时,染色质就变化成染色体。   由膜包围着含有细胞核(或拟核)的原生质所组成, 是生物体的结构和功能的基本单位, 也是生命活动的基本单位。细胞能够通过分裂而增殖,是生物体个体发育和系统发育的基础。
  细胞或是独立的作为生命单位, 或是多个细胞组成细胞群体或组织、或器官和机体;细胞还能够进行分裂和繁殖;细胞是遗传的基本单位,并具有遗传的全能性(植物),动物细胞核也有全能性。     多数细胞只有一个细胞核,有些细胞含有两个或多个细胞核,如肌细胞、肝细胞等。
  细胞核可分为核膜、染色质、核液和核仁四部分。核膜与内质网相通连,染色质位于核膜与核仁之间。染色质主要由蛋白质和DNA组成。DNA是一种有机物大分子,又叫脱氧核糖核酸,是生物的遗传物质。  在有丝分裂时,染色体复制,DNA也随之复制为两份,平均分配到两个子细胞中,使得后代细胞染色体数目恒定,从而保证了后代遗传特性的稳定。
  还有RNA,RNA是DNA在复制时的单链,它传递蛋白质,被称为DNA的信使。   动物细胞与植物细胞比较   动物细胞与植物细胞相比较,具有很多相似的地方,如动物细胞也具有细胞膜、细胞质、细胞核等结构。
    但是动物细胞与植物细胞又有一些重要的区别,如动物细胞的最外面是细胞膜,没有细胞壁;动物细胞的细胞质中不含叶绿体,也不形成中央液泡。   总之,不论是植物还是动物,都是由细胞构成的。
  细胞是生物体结构和功能的基本单位。 细胞的化学成分   组成细胞的基本元素是:O、C、H、N、Si、K、Ca、P、Mg,其中O、C、H、N四种元素占90%以上。  细胞化学物质可分为两大类:无机物和有机物。
  在无机物中水是最主要的成分,约占细胞物质总含量的75%—80%。   一、水与无机盐      (一)水是原生质最基本的物质   水在细胞中不仅含量最大,而且由于它具有一些特有的物理化学属性,使其在生命起源和形成细胞有序结构方面起着关键的作用。
    可以说,没有水,就不会有生命。水在细胞中以两种形式存在:一种是游离水,约占95%;另一种是结合水,通过氢键或其他键同蛋白质结合,约占4%~5%。随着细胞的生长和衰老,细胞的含水量逐渐下降,但是活细胞的含水量不会低于75%。
     水在细胞中的主要作用是,溶解无机物、调节温度、参加酶反应、参与物质代谢和形成细胞有序结构。  水之所以具有这么多的重要功能是和水的特有属性分不开的。   1.水分子是偶极子   从化学结构上看,水分子似乎很简单,仅是由2个氢原子和1个氧原子构成(H2O)。
  然而水分子中的电荷分布是不对称的,一侧显正电性,另一侧显负电性,从而表现出电极性,是一个典型的偶极子(图3-31)。  正由于水分子具有这一特性,它既可以同蛋白质中的正电荷结合,也可以同负电荷结合。
  蛋白质中每一个氨基酸平均可结合2。6个水分子。   由于水分子具有极性,产生静电作用,因而它是一些离子物质(如无机盐)的良好溶剂。   2.水分子间可形成氢键   由于水分子是偶极子,因而在水分子之间和水分子与其他极性分子间可建立弱作用力的氢键。
    在水中每一氧原子可与另两个水分子的氢原子形成两个氢键。氢键作用力很弱,因此分子间的氢键经常处于断开和重建的过程中。   3.水分子可解离为离子   水分子可解离为氢氧离子(OH-)和氢离子(H+)。
  在标准状况下总有少量水分子解离为离子,大约有107mol/L水分子解离,相当于每109个水分子中就有2个解离。  但是水分子的电解并不稳定,总是处于分子与离子相互转化的动态平衡之中。
     (二)无机盐   细胞中无机盐的含量很少,约占细胞总重的1%。盐在细胞中解离为离子,离子的浓度除了具有调节渗透压和维持酸碱平衡的作用外,还有许多重要的作用。   主要的阴离子有Cl—、PO4—和HCO3—,其中磷酸根离子在细胞代谢活动中最为重要:①在各类细胞的能量代谢中起着关键作用;②是核苷酸、磷脂、磷蛋白和磷酸化糖的组成成分;③调节酸碱平衡,对血液和组织液pH起缓冲作用。
       主要的阳离子有:Na+、K+、Ca2+、Mg2+、Fe2+、Fe3+、Mn2+、Cu2+、Co2+、Mo2+。   二、细胞的有机分子   细胞中有机物达几千种之多,约占细胞干重的90%以上,它们主要由碳、氢、氧、氮等元素组成。
  有机物中主要由四大类分子所组成,即蛋白质、核酸、脂类和糖,这些分子约占细胞干重的90%以上。     (一)蛋白质   在生命活动中,蛋白质是一类极为重要的大分子,几乎各种生命活动无不与蛋白质的存在有关。
  蛋白质不仅是细胞的主要结构成分,而且更重要的是,生物专有的催化剂——酶是蛋白质,因此细胞的代谢活动离不开蛋白质。一个细胞中约含有104种蛋白质,分子的数量达1011个。     (二)核酸   核酸是生物遗传信息的载体分子,所有生物均含有核酸。
  核酸是由核苷酸单体聚合而成的大分子。核酸可分为核糖核酸RNA和脱氧核糖核酸两大类DNA。当温度上升到一定高度时,DNA双链即解离为单链,称为变性(denaturation)或熔解(melting),这一温度称为熔解温度(melting temperature,Tm)。
    碱基组成不同的DNA,熔解温度不一样,含G—C对(3条氢键)多的DNA,Tm高;含A—T对(2条氢键)多的,Tm低。当温度下降到一定温度以下,变性DNA的互补单链又可通过在配对碱基间形成氢键,恢复DNA的双螺旋结构,这一过程称为复性(renaturation)或退火(annealing)。
       DNA有三种主要构象   B-DNA:为Watson&Click提出的右手螺旋模型,每圈螺旋10个碱基,螺旋扭角为36度,螺距34A,每个碱基对的螺旋上升值为3。
  4A,碱基倾角为-2度。   A-DNA:为右手螺旋,每圈螺旋10。9个碱基,螺旋扭角为33度,螺距32A,每个碱基对的螺旋上升值为2。  9A,碱基倾角为13度。   Z-DNA:为左手螺旋,每圈螺旋12个碱基,螺旋扭角为-51度(G—C)和-9度(C—G),螺距46A,每个碱基对的螺旋上升值为3。
  5A(G—C)和4。1A(C—G),碱基倾角为9度。   (三)糖类   细胞中的糖类既有单糖,也有多糖。  细胞中的单糖是作为能源以及与糖有关的化合物的原料存在。重要的单糖为五碳糖(戊糖)和六碳糖(己糖),其中最主要的五碳糖为核糖,最重要的六碳糖为葡萄糖。
  葡萄糖不仅是能量代谢的关键单糖,而且是构成多糖的主要单体。   多糖在细胞结构成分中占有主要的地位。细胞中的多糖基本上可分为两类:一类是营养储备多糖;另一类是结构多糖。  作为食物储备的多糖主要有两种,在植物细胞中为淀粉(starch),在动物细胞中为糖元(glycogen)。
  在真核细胞中结构多糖主要有纤维素(cellulose)和几丁质(chitin)。   (四)脂类   脂类包括:脂肪酸、中性脂肪、类固醇、蜡、磷酸甘油酯、鞘脂、糖脂、类胡萝卜素等。  脂类化合物难溶于水,而易溶于非极性有机溶剂。
     1、中性脂肪(neutral fat)   ①甘油酯:它是脂肪酸的羧基同甘油的羟基结合形成的甘油三酯(triglyceride)。甘油酯是动物和植物体内脂肪的主要贮存形式。当体内碳水化合物、蛋白质或脂类过剩时,即可转变成甘油酯贮存起来。
    甘油酯为能源物质,氧化时可比糖或蛋白质释放出高两倍的能量。营养缺乏时,就要动用甘油酯提供能量。   ②蜡:脂肪酸同乙醇酯化形成蜡(如蜂蜡)。蜡的碳氢链很长,熔点要高于甘油酯。
  细胞中不含蜡质,但有的细胞可分泌蜡质。如:植物表皮细胞分泌的蜡膜;同翅目昆虫的蜡腺、如高等动物外耳道的耵聍腺。     2、磷脂   磷脂对细胞的结构和代谢至关重要,它是构成生物膜的基本成分,也是许多代谢途径的参与者。
  分为甘油磷脂和鞘磷脂两大类。   3、糖脂   糖脂也是构成细胞膜的成分,与细胞的识别和表面抗原性有关。   4、萜类和类固醇类   这两类化合物都是异戊二烯(isoptene)的衍生物,都不含脂肪酸。
       生物中主要的萜类化合物有胡萝卜素和维生素A、E、K等。还有一种多萜醇磷酸酯,它是细胞质中糖基转移酶的载体。   类固醇类(steroids)化合物又称甾类化合物,其中胆固醇是构成膜的成分。
  另一些甾类化合物是激素类,如雌性激素、雄性激素、肾上腺激素等。   三、酶与生物催化剂   (一)酶   酶是蛋白质性的催化剂,主要作用是降低化学反应的活化能,增加了反应物分子越过活化能屏障和完成反应的概率。
    酶的作用机制是,在反应中酶与底物暂时结合,形成了酶——底物活化复合物。这种复合物对活化能的需求量低,因而在单位时间内复合物分子越过活化能屏障的数量就比单纯分子要多。反应完成后,酶分子迅即从酶——底物复合物中解脱出来。
     酶的主要特点是:具有高效催化能力、高度特异性和可调性;要求适宜的pH和温度;只催化热力学允许的反应,对正负反应的均具有催化能力,实质上是能加速反应达到平衡的速度。     某些酶需要有一种非蛋白质性的辅因子(cofactor)结合才能具有活性。
  辅因子可以是一种复杂的有机分子,也可以是一种金属离子,或者二者兼有。完全的蛋白质——辅因子复合物称为全酶(holoenzyme)。全酶去掉辅因子,剩下的蛋白质部分称为脱辅基酶蛋白(apoenzyme)。
       (二)RNA催化剂   T。Cech 1982发现四膜虫(Tetrahymena)rRNA的前体物能在没有任何蛋白质参与下进行自我加工,产生成熟的rRNA产物。
  这种加工方式称为自我剪接(self splicing)。后来又发现,这种剪下来的RNA内含子序列像酶一样,也具有催化活性。  此RNA序列长约400个核苷酸,可褶叠成表面复杂的结构。
  它也能与另一RNA分子结合,将其在一定位点切割开,因而将这种具有催化活性的RNA序列称为核酶Ribozyme。后来陆续发现,具有催化活性的RNA不只存在于四膜虫,而是普遍存在于原核和真核生物中。
  一个典型的例子核糖体的肽基转移酶,过去一直认为催化肽链合成的是核糖体中蛋白质的作用,但事实上具有肽基转移酶活性和催化形成肽键的成分是RNA,而不是蛋白质,核糖体中的蛋白质只起支架作用。  。
  

类似问题换一批

热点推荐

热度TOP

相关推荐
加载中...

热点搜索 换一换

教育/科学
生物学
出国/留学
院校信息
人文学科
职业教育
升学入学
理工学科
外语学习
学习帮助
K12
理工学科
生物学
农业科学
数学
化学
天文学
环境学
建筑学
工程技术科学
地球科学
生态学
心理学
物理学
生物学
生物学
举报
举报原因(必选):
取消确定举报